SpringBoot项目——使用Spark对爬虫爬取下的数据进行清洗

随着互联网信息呈爆炸式增长,爬虫技术被广泛用于从海量网页中抓取有价值的数据。然而,爬取到的数据往往存在格式不规范、重复、噪声等诸多问题,需要高效的数据清洗流程来保障数据质量,Spark 在其中发挥了关键作用。

什么是Spark

Spark 是当今大数据领域最活跃、最热门、最高效的大数据通用计算平台之一

Spark 是为大规模数据处理而设计的分布式计算框架,旨在处理海量数据的存储和分析任务。它可以在集群环境中运行,将计算任务分布到多个节点上,利用集群的并行处理能力来加速数据处理过程。提供了基础的弹性分布式数据集(RDD)抽象,是 Spark 的核心部分,可进行通用的分布式数据处理操作。

Spark的优点

  1. 快:与Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上;而基于磁盘的运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效地处理数据流。
  2. 易用:Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同应用。而且Spark支持交互式的Python和Scala的Shell,这意味着可以非常方便的在这些Shell中使用Spark集群来验证解决问题的方法,而不是像以前一样,需要打包、上传集群、验证等。这对于原型开发非常重要。
  3. 通用性:Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(通用Spark SQL)、实时流处理(通过Spark Streaming)、机器学习(通过Spark MLlib)和图计算(通过Spark GraphX)。这些不同类型的处理都可以在同一应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台处理问题,减少开发和维护的人力成本和部署平台的物理成本。当然还有,作为统一的解决方案,Spark并没有以牺牲性能为代价。相反,在性能方面Spark具有巨大优势。
  4. 可融合性:Spark非常方便的与其他开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassanda等。这对于已部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark强大的处理能力。Spark也可以不依赖第三方的资源管理器和调度器,它实现了Standalone作为其内置资源管理器和调度框架,这样进一步降低了Spark的使用门槛,使得所有人可以非常容易地部署和使用Spark。此外Spark还提供了在EC2上部署Standalone的Spark集群的工具。

Spark的使用

Spark大至使用流程

  1. 要先将数据进行存放在一个txt文本文件当中,
  2. 使用Spark进行读取txt中的文本数据,进行数据处理
  3. 将清洗后的数据转存到原来的txt文件当中
  4. 想要存放到数据库当中,则将txt文本文件中的数据再次读出出来存放进去即可

Spark的maven依赖

Spark想要在Springboot项目中使用要引入相应的maven依赖

<dependency>
   <groupId>o
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值