Java并发库(十六):线程等待CountDownLatch

本文详细介绍了Java并发库中的CountDownLatch同步工具,通过实例演示了如何利用CountDownLatch实现线程间的等待与通知机制,适用于多线程编程场景。

深切怀念传智播客张孝祥老师,特将其代表作——Java并发库视频研读两遍,受益颇丰,记以后阅

16.java5CountDownLatch同步工具

       好像倒计时计数器,调用CountDownLatch对象的countDown方法就将计数器减1,当到达0时,所有等待者就开始执行。

       举例:多个运动员等待裁判命令:    裁判等所有运动员到齐后发布结果

代码示例:

ExecutorService service =Executors.newCachedThreadPool();

裁判发布命令的计数器,计数器为0,运动员就跑

final CountDownLatch cdOrder = newCountDownLatch(1);     

运动员跑到终点的计数器,为0裁判宣布结果

final CountDownLatch cdAnswer = newCountDownLatch(3);

产生3个运动员

for (int i=0; i<3; i++)

{     运动员的任务

       Runnablerunnable = new Runnable(){

public void run()

{

       SOP(ThreadName准备接受命令)

       等待发布命令

       cdOrder.await();     计数器为0继续向下执行

       SOP(ThreadName已接受命令)    order计数器为0了

       Thread.sleep(Random);开始跑步

       cdAnswer.countDown();跑到终点了,计数器减1

}

};

       service.execute(runnable);运动员开始任务

}

Thread.sleep(1000)裁判休息一会 再发布命令

SOP(即将发布命令)

cdOrder.countDown();命令计数器置为0,发布命令

SOP(命令已经发布,等待结果)

cdAnswer.await(); 等待所有运动员,计数器为0 所有运动员到位

SOP(宣布结果)

 

java.util.concurrent.CountDownLatch

一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。用给定的计数 初始化 CountDownLatch。由于调用了countDown()方法,所以在当前计数到达零之前,await方法会一直受阻塞。之后,会释放所有等待的线程,await的所有后续调用都将立即返回。这种现象只出现一次——计数无法被重置。如果需要重置计数,请考虑使用CyclicBarrier

CountDownLatch 是一个通用同步工具,它有很多用途。将计数 1 初始化的 CountDownLatch 用作一个简单的开/关锁存器,或入口:在通过调用countDown()的线程打开入口前,所有调用await的线程都一直在入口处等待。用N 初始化的CountDownLatch 可以使一个线程在 N 个线程完成某项操作之前一直等待,或者使其在某项操作完成 N 次之前一直等待。

CountDownLatch 的一个有用特性是,它不要求调用 countDown 方法的线程等到计数到达零时才继续,而在所有线程都能通过之前,它只是阻止任何线程继续通过一个await

构造方法摘要

CountDownLatch(int count)           构造一个用给定计数初始化的 CountDownLatch。

方法摘要

 void

await()           使当前线程在锁存器倒计数至零之前一直等待,除非线程被中断

 boolean

await(long timeout,TimeUnit unit)           使当前线程在锁存器倒计数至零之前一直等待,除非线程被中断或超出了指定的等待时间。

 void

countDown()           递减锁存器的计数,如果计数到达零,则释放所有等待的线程。

 long

getCount()           返回当前计数。

 String

toString()           返回标识此锁存器及其状态的字符串。

public class CountdownLatchTest {

 

       publicstatic void main(String[] args) {

              ExecutorServiceservice = Executors.newCachedThreadPool();

              final CountDownLatch cdOrder =new CountDownLatch(1);//等待主线程发布命令

              final CountDownLatchcdAnswer = new CountDownLatch(3);   //等待三个线程到齐    

              for(inti=0;i<3;i++){

                     Runnablerunnable = new Runnable(){

                                   publicvoid run(){

                                   try{

                                          System.out.println("线程" + Thread.currentThread().getName()+

                                                        "正准备接受命令");                                       

                                          cdOrder.await();

                                          System.out.println("线程" +Thread.currentThread().getName() +

                                          "已接受命令");                                                     

                                          Thread.sleep((long)(Math.random()*10000));     

                                          System.out.println("线程" + Thread.currentThread().getName()+

                                                        "回应命令处理结果");                                    

                                          cdAnswer.countDown();                                   

                                   }catch (Exception e) {

                                          e.printStackTrace();

                                   }                         

                            }

                     };

                     service.execute(runnable);

              }           

              try{

                     Thread.sleep((long)(Math.random()*10000));

             

                     System.out.println("线程" +Thread.currentThread().getName() +

                                   "即将发布命令");                                    

                     cdOrder.countDown();

                     System.out.println("线程" +Thread.currentThread().getName() +

                     "已发送命令,正在等待结果"); 

                     cdAnswer.await();

                     System.out.println("线程" + Thread.currentThread().getName()+

                     "已收到所有响应结果");    

              }catch (Exception e) {

                     e.printStackTrace();

              }                         

              service.shutdown();

 

       }

}


public class CountdownLatchTest {

	public static void main(String[] args) {
		ExecutorService service = Executors.newCachedThreadPool();
		final CountDownLatch cdOrder = new CountDownLatch(1);
		final CountDownLatch cdAnswer = new CountDownLatch(3);		
		for(int i=0;i<3;i++){
			Runnable runnable = new Runnable(){
					public void run(){
					try {
						System.out.println("线程" + Thread.currentThread().getName() + 
								"正准备接受命令");						
						cdOrder.await();
						System.out.println("线程" + Thread.currentThread().getName() + 
						"已接受命令");								
						Thread.sleep((long)(Math.random()*10000));	
						System.out.println("线程" + Thread.currentThread().getName() + 
								"回应命令处理结果");						
						cdAnswer.countDown();						
					} catch (Exception e) {
						e.printStackTrace();
					}				
				}
			};
			service.execute(runnable);
		}		
		try {
			Thread.sleep((long)(Math.random()*10000));
		
			System.out.println("线程" + Thread.currentThread().getName() + 
					"即将发布命令");						
			cdOrder.countDown();
			System.out.println("线程" + Thread.currentThread().getName() + 
			"已发送命令,正在等待结果");	
			cdAnswer.await();
			System.out.println("线程" + Thread.currentThread().getName() + 
			"已收到所有响应结果");	
		} catch (Exception e) {
			e.printStackTrace();
		}				
		service.shutdown();

	}
}


标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值