资源整理

本文汇总了深度学习领域的优质教程、课程、代码库及研究资源,覆盖从入门到进阶所需的各类材料,包括Ng、Bengio等专家的教程,以及知名高校的课程资料。

Deep Learning(深度学习):

ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一

ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二

Bengio团队的deep learning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。

deeplearning.net主页,里面包含的信息量非常多,有software, reading list, research lab, dataset, demo等,强烈推荐,自己去发现好资料。

Deep learning的toolbox,matlab实现的,对应源码来学习一些常见的DL模型很有帮助,这个库我主要是用来学习算法实现过程的。

2013年龙星计划深度学习教程,邓力大牛主讲,虽然老师准备得不充分,不过还是很有收获的。

Hinton大牛在coursera上开的神经网络课程,DL部分有不少,非常赞,没有废话,课件每句话都包含了很多信息,有一定DL基础后去听收获更大。

Larochelle关于DL的课件,逻辑清晰,覆盖面广,包含了rbm系列,autoencoder系列,sparse coding系列,还有crf,cnn,rnn等虽然网页是法文,但是课件是英文。

CMU大学2013年的deep learning课程,有不少reading paper可以参考。

达慕思大学Lorenzo Torresani的2013Deep learning课程reading list.

Deep Learning Methods for Vision(余凯等在cvpr2012上组织一个workshop,关于DL在视觉上的应用)。

斯坦福Ng团队成员链接主页,可以进入团队成员的主页,比较熟悉的有Richard Socher, Honglak Lee, Quoc Le等。

多伦多ML团队成员链接主页,可以进入团队成员主页,包括DL鼻祖hinton,还有Ruslan Salakhutdinov , Alex Krizhevsky等。

蒙特利尔大学机器学习团队成员链接主页,包括大牛Bengio,还有Ian Goodfellow 等。

纽约大学的机器学习团队成员链接主页,包括大牛Lecun,还有Rob Fergus等。

Charlie Tang个人主页,结合DL+SVM.

豆瓣上的脑与deep learning读书会,有讲义和部分视频,主要介绍了一些于deep learning相关的生物神经网络。

Large Scale ML的课程,由Lecun和Langford讲的,能不推荐么。

Yann Lecun的2014年Deep Learning课程主页。 视频链接。 

吴立德老师《深度学习课程》

一些常见的DL code列表,csdn博主zouxy09的博文,Deep Learning源代码收集-持续更新…

Deep Learning for NLP (without Magic),由DL界5大高手之一的Richard Socher小组搞的,他主要是NLP的。

2012 Graduate Summer School: Deep Learning, Feature Learning,高手云集,深度学习盛宴,几乎所有的DL大牛都有参加。

matlab下的maxPooling速度优化,调用C++实现的。

2014年ACL机器学习领域主席Kevin Duh的深度学习入门讲座视频。

R-CNN code: Regions with Convolutional Neural Network Features.


Machine Learning(机器学习):

介绍图模型的一个ppt,非常的赞,ppt作者总结得很给力,里面还包括了HMM,MEM, CRF等其它图模型。反正看完挺有收获的。

机器学习一个视频教程,youtube上的,翻吧,内容很全面,偏概率统计模型,每一小集只有几分钟。 

龙星计划2012机器学习,由余凯和张潼主讲。

demonstrate 的 blog :关于PGM(概率图模型)系列,主要按照Daphne Koller的经典PGM教程介绍的,大家依次google之

FreeMind的博客,主要关于机器学习的。

Tom Mitchell大牛的机器学习课程,他的machine learning教科书非常出名。

CS109,Data Science,用python介绍机器学习算法的课程。

CCF主办的一些视频讲座。


优化:

submodual优化网页。

Geoff Gordon的优化课程,youtube上有对应视频。


数学:

http://www.youku.com/playlist_show/id_19465801.html

《计算机中的数学》系列视频,8位老师10讲内容,生动介绍微积分和线性代数基本概念在计算机学科中的各种有趣应用!


ML常用博客资料等:

http://freemind.pluskid.org/

由 pluskid 所维护的 blog,主要记录一些机器学习、程序设计以及各种技术和非技术的相关内容,写得很不错。

http://datasciencemasters.org/

里面包含学ML/DM所需要的一些知识链接,且有些给出了视频教程,网页资料,电子书,开源code等,推荐!

http://cs.nju.edu.cn/zhouzh/index.htm

周志华主页,不用介绍了,机器学习大牛,更可贵的是他的很多文章都有源码公布。

http://www.eecs.berkeley.edu/~jpaisley/Papers.htm

John Paisley的个人主页,主要研究机器学习领域,有些文章有代码提供。

http://foreveralbum.yo2.cn/

里面有一些常见机器学习算法的详细推导过程。

http://blog.youkuaiyun.com/abcjennifer

浙江大学CS硕士在读,关注计算机视觉,机器学习,算法研究,博弈, 人工智能, 移动互联网等学科和产业。该博客中有很多机器学习算法方面的介绍。

http://www.wytk2008.net/

无垠天空的机器学习博客。

http://www.chalearn.org/index.html

机器学习挑战赛。

http://licstar.net/

licstar的技术博客,偏自然语言处理方向。


开源软件:

http://mloss.org/software/

一些ML开源软件在这里基本都可以搜到,有上百个。

https://github.com/myui/hivemall

Scalable machine learning library for Hive/Hadoop.

http://scikit-learn.org/stable/

 

基于python的机器学习开源软件,文档写得不错。

公开课:

网易公开课,国内做得很不错的公开课,翻译了一些国外出名的公开课教程,与国外公开课平台coursera有合作。

coursera在线教育网上公开课,很新,有个邮箱注册即可学习,有不少课程,且有对应的练习,特别是编程练习,超赞。

斯坦福网上公开课链接,有统计学习,凸优化等课程。

udacity公开课程下载链接,其实速度还可以。里面有不少好教程。

机器学习公开课的连接,有不少课。


摘自http://www.cnblogs.com/tornadomeet/archive/2012/05/24/2515980.html 
【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度与位置,并参考个体历史最优解和群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值