Deep Learning(深度学习):
ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一
ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二
Bengio团队的deep learning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。
deeplearning.net主页,里面包含的信息量非常多,有software, reading list, research lab, dataset, demo等,强烈推荐,自己去发现好资料。
Deep learning的toolbox,matlab实现的,对应源码来学习一些常见的DL模型很有帮助,这个库我主要是用来学习算法实现过程的。
2013年龙星计划深度学习教程,邓力大牛主讲,虽然老师准备得不充分,不过还是很有收获的。
Hinton大牛在coursera上开的神经网络课程,DL部分有不少,非常赞,没有废话,课件每句话都包含了很多信息,有一定DL基础后去听收获更大。
Larochelle关于DL的课件,逻辑清晰,覆盖面广,包含了rbm系列,autoencoder系列,sparse coding系列,还有crf,cnn,rnn等。虽然网页是法文,但是课件是英文。
CMU大学2013年的deep learning课程,有不少reading paper可以参考。
达慕思大学Lorenzo Torresani的2013Deep learning课程reading list.
Deep Learning Methods for Vision(余凯等在cvpr2012上组织一个workshop,关于DL在视觉上的应用)。
斯坦福Ng团队成员链接主页,可以进入团队成员的主页,比较熟悉的有Richard Socher, Honglak Lee, Quoc Le等。
多伦多ML团队成员链接主页,可以进入团队成员主页,包括DL鼻祖hinton,还有Ruslan Salakhutdinov , Alex Krizhevsky等。
蒙特利尔大学机器学习团队成员链接主页,包括大牛Bengio,还有Ian Goodfellow 等。
纽约大学的机器学习团队成员链接主页,包括大牛Lecun,还有Rob Fergus等。
豆瓣上的脑与deep learning读书会,有讲义和部分视频,主要介绍了一些于deep learning相关的生物神经网络。
Large Scale ML的课程,由Lecun和Langford讲的,能不推荐么。
Yann Lecun的2014年Deep Learning课程主页。 视频链接。
一些常见的DL code列表,csdn博主zouxy09的博文,Deep Learning源代码收集-持续更新…
Deep Learning for NLP (without Magic),由DL界5大高手之一的Richard Socher小组搞的,他主要是NLP的。
2012 Graduate Summer School: Deep Learning, Feature Learning,高手云集,深度学习盛宴,几乎所有的DL大牛都有参加。
matlab下的maxPooling速度优化,调用C++实现的。
2014年ACL机器学习领域主席Kevin Duh的深度学习入门讲座视频。
R-CNN code: Regions with Convolutional Neural Network Features.
Machine Learning(机器学习):
介绍图模型的一个ppt,非常的赞,ppt作者总结得很给力,里面还包括了HMM,MEM, CRF等其它图模型。反正看完挺有收获的。
机器学习一个视频教程,youtube上的,翻吧,内容很全面,偏概率统计模型,每一小集只有几分钟。
demonstrate 的 blog :关于PGM(概率图模型)系列,主要按照Daphne Koller的经典PGM教程介绍的,大家依次google之。
Tom Mitchell大牛的机器学习课程,他的machine learning教科书非常出名。
CS109,Data Science,用python介绍机器学习算法的课程。
优化:
Geoff Gordon的优化课程,youtube上有对应视频。
数学:
http://www.youku.com/playlist_show/id_19465801.html
《计算机中的数学》系列视频,8位老师10讲内容,生动介绍微积分和线性代数基本概念在计算机学科中的各种有趣应用!
ML常用博客资料等:
由 pluskid 所维护的 blog,主要记录一些机器学习、程序设计以及各种技术和非技术的相关内容,写得很不错。
http://datasciencemasters.org/
里面包含学ML/DM所需要的一些知识链接,且有些给出了视频教程,网页资料,电子书,开源code等,推荐!
http://cs.nju.edu.cn/zhouzh/index.htm
周志华主页,不用介绍了,机器学习大牛,更可贵的是他的很多文章都有源码公布。
http://www.eecs.berkeley.edu/~jpaisley/Papers.htm
John Paisley的个人主页,主要研究机器学习领域,有些文章有代码提供。
里面有一些常见机器学习算法的详细推导过程。
http://blog.youkuaiyun.com/abcjennifer
浙江大学CS硕士在读,关注计算机视觉,机器学习,算法研究,博弈, 人工智能, 移动互联网等学科和产业。该博客中有很多机器学习算法方面的介绍。
无垠天空的机器学习博客。
http://www.chalearn.org/index.html
机器学习挑战赛。
licstar的技术博客,偏自然语言处理方向。
开源软件:
一些ML开源软件在这里基本都可以搜到,有上百个。
https://github.com/myui/hivemall
Scalable machine learning library for Hive/Hadoop.
http://scikit-learn.org/stable/
基于python的机器学习开源软件,文档写得不错。
公开课:
网易公开课,国内做得很不错的公开课,翻译了一些国外出名的公开课教程,与国外公开课平台coursera有合作。
coursera在线教育网上公开课,很新,有个邮箱注册即可学习,有不少课程,且有对应的练习,特别是编程练习,超赞。
udacity公开课程下载链接,其实速度还可以。里面有不少好教程。