An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: “Push X” where X is the index of the node being pushed onto the stack; or “Pop” meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:
3 4 2 6 5 1
题解
入栈顺序就是先序序列,出栈顺序就是中序序列,构造后序序列。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 50;
int n;
int pre[maxn], in[maxn], post[maxn];
stack<int> sta;
void sol(int preIndex, int inIndex, int postIndex, int n){
if(n == 0) return;
if(n == 1) {
post[postIndex] = pre[preIndex];
return;
}
post[postIndex + n - 1] = pre[preIndex];
int i = 0;
for(; i < n && in[inIndex + i] != pre[preIndex]; ++i);
int left = i, right = n - i - 1;
sol(preIndex + 1, inIndex, postIndex, left);
sol(preIndex + left + 1, inIndex + left + 1, postIndex + left, right);
}
int main(){
cin >> n;
string op; int index;
int pre_k = 0, in_k = 0;
for(int i = 0; i < 2 * n; ++i){
cin >> op;
if(op == "Push"){
cin >> index;
sta.push(index);
pre[pre_k++] = index;
}else{
in[in_k++] = sta.top();
sta.pop();
}
}
sol(0, 0, 0, n);
for(int i = 0; i < n; ++i){
if(i) cout << " ";
cout << post[i];
}
return 0;
}