#coding=utf-8
import cv2
import numpy as np
def ImageScale(img, scale):
size = img.shape
SIZE1 = size[0]
SIZE2 = size[1]
if scale > 1:
size1 = int(SIZE1 * scale) + 1
size2 = int(SIZE2 * scale) #是否加1,根据具体图像尺寸的奇偶决定
#这里需要注意,对于w h 不等的图像, w h 的顺序值需要调整好.
img = cv2.resize(img, (size2, size1), interpolation = cv2.INTER_CUBIC) #双三次线性插值法.
a1 = (size1 - SIZE1) / 2
b1 = size1 - a1
a2 = (size2 - SIZE2) / 2
b2 = size2 - a2
#print a1,b1,a2,b2
img = img[a1:b1, a2:b2]
#print img.shape
else: #即scale<1
size1 = int(SIZE1 * scale)
size2 = int(SIZE2 * scale) + 1 # 是否加1,根据具体图像尺寸的奇偶决定
img = cv2.resize(img, (size2, size1), interpolation=cv2.INTER_CUBIC) # 双三次线性插值法.
return img
def mirrpadding(img, s1, s2):
orgsize = img.shape
size1 = orgsize[0]
size2 = orgsize[1]
a1 = (s1 - size1) / 2 #例:(129-103)/2 = 13
b1 = size1 - a1 #103-13
a2 = (s2 - size2) / 2 #例:(84-68)/2 = 8
b2 = size2 - a2 # 68-8
#print a1,b1,a2,b2
img1 = np.rot90((np.rot90(img[:a1, :a2].T)).T, 3)
print img1.shape, '1'
img2 = np.rot90(img[:a1,:].T)
print img2.shape, '2'
img3 = np.rot90((np.rot90(img[:a1, b2:].T)).T, 3)
print img3.shape, '3'
img4 = np.rot90(img[:,:a2].T, 3)
print img4.shape, '4'
img5 = np.rot90(img[:, b2:].T, 3)
print img5.shape, '5'
img6 = np.rot90((np.rot90(img[b1:, :a2].T)).T, 3)
print img6.shape, '6'
img7 = np.rot90(img[b1:, :].T)
print img7.shape, '7'
img8 = np.rot90((np.rot90(img[b1:, b2:].T)).T, 3)
print img8.shape, '8'
img = np.concatenate((img4, img, img5), axis=1) #concatenate拼接函数,axis=1即在第二个维度上进行拼接.
img1 = np.concatenate((img1, img2, img3), axis=1)
img6 = np.concatenate((img6, img7, img8), axis=1)
img = np.concatenate((img1, img, img6), axis=0)
print img.shape, 'img'
cv2.imwrite('/.../img/mirror.png', img)
#关于填充什么像素值,可以根据图像特点进行修改.
def padding(img, s1, s2): #s1 s2为原图的w h值
img_1 = img
orgsize = img.shape
size1 = orgsize[0]
size2 = orgsize[1]
a1 = (s1 - size1) / 2 #例:(129-103)/2 = 13
b1 = size1 - a1 #103-13
a2 = (s2 - size2) / 2 #例:(84-68)/2 = 8
b2 = size2 - a2 # 68-8
#print a1,b1,a2,b2
img1 = np.zeros([a1, a2],np.uint)
size = img1.shape
for i in range(size[0]):
for j in range(size[1]):
img1[i, j] = img[0, 0] #padding为最上角的像素值.
print img1.shape, '1'
img2 = img_1[:a1,:]
size = img2.shape
for i in range(size[0]):
for j in range(size[1]):
img2[i, j] = img[0, 0] # 得视情况而定...
print img2.shape, '2'
img3 = img_1[:a1, b2:]
size = img3.shape
for i in range(size[0]):
for j in range(size[1]):
img3[i, j] = img[0, 0] #
print img3.shape, '3'
img4 = img_1[:,:a2]
size = img4.shape
for i in range(size[0]):
for j in range(size[1]):
img4[i, j] = img[0, 0] #
print img4.shape, '4'
img5 = img_1[:, b2:]
size = img5.shape
for i in range(size[0]):
for j in range(size[1]):
img5[i, j] = img[0, 0] #
print img5.shape, '5'
img6 = img_1[b1:, :a2]
size = img6.shape
for i in range(size[0]):
for j in range(size[1]):
img6[i, j] = img[0, 0] #
print img6.shape, '6'
img7 = img_1[b1:, :]
size = img7.shape
for i in range(size[0]):
for j in range(size[1]):
img7[i, j] = img[0, 0] #
print img7.shape, '7'
img8 = img_1[b1:, b2:]
size = img8.shape
for i in range(size[0]):
for j in range(size[1]):
img8[i, j] = img[0, 0] #
print img8.shape, '8'
img = np.concatenate((img4, img, img5), axis=1) #concatenate拼接函数,axis=1即在第二个维度上进行拼接.
img1 = np.concatenate((img1, img2, img3), axis=1)
img6 = np.concatenate((img6, img7, img8), axis=1)
img = np.concatenate((img1, img, img6), axis=0)
cv2.imwrite('.../img/padding.png', img)
img = cv2.imread('.../img/1_1.png', -1)
s1 = img.shape[0]
s2 = img.shape[1]
img1 = ImageScale(img, 0.8)
cv2.imwrite('/home/chenjia/HWDB1.1tst_gnt/img/0.8.png', img1)
# img = cv2.cvtColor(img,cv2.COLOR_RGB2BGR)
# img = cv2.resize(img, (102,102), interpolation = cv2.INTER_CUBIC)
# cv2.imwrite('/home/lenovo/2Tdisk/face/code/test/gray.jpg', img)
mirrpadding(img1, s1, s2)
padding(img1, s1, s2)
python-opencv实现缩放后以pad扩展
最新推荐文章于 2024-05-17 10:44:04 发布