java基础语法--volatitle

本文深入探讨Java并发控制机制,包括Volatile变量的可见性和轻量级特性,Synchronized的锁机制及原子性保障,以及Lock接口提供的高级线程同步功能。分析三者在性能、安全性和灵活性上的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

volatile变量

 Java语言提供了一种稍弱的同步机制,即volatile变量,用来确保将变量的更新操作通知到其他线程。当把变量声明为volatile类型后,编译器与运行时都会注意到这个变量是共享的,因此不会将该变量上的操作与其他内存操作一起重排序。volatile变量不会被缓存在寄存器或者对其他处理器不可见的地方,因此在读取volatile类型的变量时总会返回最新写入的值。

在访问volatile变量时不会执行加锁操作,因此也就不会使执行线程阻塞,因此volatile变量是一种比sychronized关键字更轻量级的同步机制。

当对非 volatile 变量进行读写的时候,每个线程先从内存拷贝变量到CPU缓存中。如果计算机有多个CPU,每个线程可能在不同的CPU上被处理,这意味着每个线程可以拷贝到不同的 CPU cache 中。

而声明变量是 volatile 的,JVM 保证了每次读变量都从内存中读,跳过 CPU cache 这一步。

当一个变量定义为 volatile 之后,将具备两种特性:

1.保证此变量对所有的线程的可见性,这里的“可见性”,如本文开头所述,当一个线程修改了这个变量的值,volatile 保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。但普通变量做不到这点,普通变量的值在线程间传递均需要通过主内存(详见:Java内存模型)来完成。

2.禁止指令重排序优化。有volatile修饰的变量,赋值后多执行了一个“load addl $0x0, (%esp)”操作,这个操作相当于一个内存屏障(指令重排序时不能把后面的指令重排序到内存屏障之前的位置),只有一个CPU访问内存时,并不需要内存屏障;(什么是指令重排序:是指CPU采用了允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理)

volatile 性能:

  volatile 的读性能消耗与普通变量几乎相同,但是写操作稍慢,因为它需要在本地代码中插入许多内存屏障指令来保证处理器不发生乱序执行

使用volatile而不是synchronized的唯一安全的情况是类中只有一个可变的域。

synchronized

synchronized叫做同步锁,是Lock的一个简化版本,由于是简化版本,那么性能肯定是不如Lock的,不过它操作起来方便,只需要在一个方法或把需要同步的代码块包装在它内部,那么这段代码就是同步的了,所有线程对这块区域的代码访问必须先持有锁才能进入,否则则拦截在外面等待正在持有锁的线程处理完毕再获取锁进入,正因为它基于这种阻塞的策略,所以它的性能不太好,但是由于操作上的优势,只需要简单的声明一下即可,而且被它声明的代码块也是具有操作的原子性。
-

如果一个类中有多个synchronized修饰的同步方法,且多个线程持有该类的同一个对象(该类的相同的对象),尽管它们调用不同的方法,各个方法的执行也是同步的。

如果各个同步的方法之间没有共享变量,或者说各个方法之间没有联系,但也只能同步执行,这会影响效率。

但是采用synchronized关键字来实现同步的话,就会导致一个问题:

  如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

  因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

  另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

  总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:

  1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

  2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。

Lock

Lock接口中方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。

在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?

  首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。

  由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。

tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。

  tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

 lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

  由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。

注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。

  因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。

  而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。

若lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

ReadWriteLock也是一个接口,一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。

 ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。

不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。

  如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。

Lock和synchronized的选择

  总结来说,Lock和synchronized有以下几点不同:

  1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;

  2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;

  3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;

  4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。

  5)Lock可以提高多个线程进行读操作的效率。

  在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

比较:

①volatile轻量级,只能修饰变量。synchronized重量级,还可修饰方法

②volatile只能保证数据的可见性,不能用来同步,因为多个线程并发访问volatile修饰的变量不会阻塞。

synchronized不仅保证可见性,而且还保证原子性,因为,只有获得了锁的线程才能进入临界区,从而保证临界区中的所有语句都全部执行。多个线程争抢synchronized锁对象时,会出现阻塞。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值