dl4j附录四,如何排除故障

本文探讨了深度学习网络的调试过程,强调了试错在寻找最佳网络配置中的重要性。DL4J提供了监听器设施,如ScoreIterationListener和HistogramIterationListener,用于监控网络性能并提供调整参数所需的数据。通过理解和应用这些工具,可以更有效地优化神经网络的表现。

Troubleshooting a Neural Net Model

Building neural networks to solve problems is an empirical process. That is, it requires trial and error. So you will have to try different settings and architectures in order to find a neural net configuration that performs well.

DL4J provides a listener facility help you monitor your network’s performance visually. You can set up listeners for your model that will be called after each mini-batch is processed. One of most often used listeners that DL4J ships out of the box is ScoreIterationListener. Check out all Listeners for more.

While ScoreIterationListener will simply print the current error score for your network, HistogramIterationListener will start up a web UI that to provide you with a host of different information that you can use to fine tune your network configuration. See Visualize, Monitor and Debug Network Learningon how to interpret that data.

See Troubleshooting neural nets for more information on how to improve results.

 

以上参考官网,并将官网说明照搬过来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值