dl4j附录一,如何创建一个模型

本文介绍如何使用DL4J构建深度神经网络,通过示例展示了如何设置优化算法、更新器及网络层,如DenseLayer和OutputLayer。文章强调了DL4J在优化算法与更新器分离的独特设计,提供了构建复杂网络如循环和卷积网络的能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下是参考官方文档实现一个模型的例子及说明

DL4J gives data scientists and developers tools to build a deep neural networks on a high level using concepts like layer. It employs a builder pattern in order to build the neural net declaratively, as you can see in this (simplified) example:

MultiLayerConfiguration conf = 
	new NeuralNetConfiguration.Builder()
		.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
		.updater(new Nesterovs(learningRate, 0.9))
		.list(
			new DenseLayer.Builder().nIn(numInputs).nOut(numHiddenNodes).activation("relu").build(),
			new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD).activation("softmax").nIn(numHiddenNodes).nOut(numOutputs).build()
		).backprop(true).build();

If you are familiar with other deep learning frameworks, you will notice that this looks a bit like Keras.

Unlike other frameworks, DL4J splits the optimization algorithm from the updater algorithm. This allows for flexibility as you seek a combination of optimizer and updater that works best for your data and problem.

Besides the DenseLayer and OutputLayer that you have seen in the example above, there are several other layer types, like GravesLSTMConvolutionLayerRBMEmbeddingLayer, etc. Using those layers you can define not only simple neural networks, but also recurrent and convolutional networks.

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值