题目:
Problem Description
The recreation center of WHU ACM Team has indoor billiards, Ping Pang, chess and bridge, toxophily, deluxe ballrooms KTV rooms, fishing, climbing, and so on.<br>We all like toxophily.<br><br>Bob is hooked on toxophily recently. Assume that Bob is at point (0,0) and he wants to shoot the fruits on a nearby tree. He can adjust the angle to fix the trajectory. Unfortunately, he always fails at that. Can you help him?<br><br>Now given the object's coordinates, please calculate the angle between the arrow and x-axis at Bob's point. Assume that g=9.8N/m. <br>
Input
The input consists of several test cases. The first line of input consists of an integer T, indicating the number of test cases. Each test case is on a separated line, and it consists three floating point numbers: x, y, v. x and y indicate the coordinate of the fruit. v is the arrow's exit speed.<br>Technical Specification<br><br>1. T ≤ 100.<br>2. 0 ≤ x, y, v ≤ 10000. <br>
Output
For each test case, output the smallest answer rounded to six fractional digits on a separated line.<br>Output "-1", if there's no possible answer.<br><br>Please use radian as unit. <br>
Sample Input
3<br>0.222018 23.901887 121.909183<br>39.096669 110.210922 20.270030<br>138.355025 2028.716904 25.079551<br>
Sample Output
1.561582<br>-1<br>-1<br>题意:给你一个坐标,和初速度,从(0,0)开始,求出射中时的最小角度。。
想法:先求出最大值,然后二分。。
代码:
#include <iostream>
#include <iomanip>
#include<algorithm>
#include<cmath>
using namespace std;
const double g=9.8;
const double pi=acos(-1);
const double eps=1e-10;
double X,Y,v,sita;
double cal(double x)
{
double t,a;
t=X/(v*cos(x));
a=v*sin(x)*t-0.5*g*t*t;
return a;
}
double triplediv()
{
double mid1,mid2,l,r,h1,h2;
l=0;
r=0.5*pi;
while((r-l)>eps)
{
mid1=(2*l+r)/3;
mid2=(l+2*r)/3;
h1=cal(mid1);
h2=cal(mid2);
if(h1>h2)
r=mid2;
else
l=mid1;
}
sita=l;
return cal(l);
}
void doublediv(double maxy)
{
int i;
double l,r,mid,h;
l=0;
r=sita;
while((r-l)>eps)
{
mid=(l+r)/2;
h=cal(mid);
if(h>Y)
r=mid;
else
l=mid;
}
cout<<setprecision(6)<<fixed<<l<<endl;
}
int main()
{
int t;
double maxy;
cin>>t;
while(t--)
{
cin>>X>>Y>>v;
maxy=triplediv();
if(maxy<Y)
cout<<"-1"<<endl;
else
doublediv(maxy);
}
return 0;
}
#include <iomanip>
#include<algorithm>
#include<cmath>
using namespace std;
const double g=9.8;
const double pi=acos(-1);
const double eps=1e-10;
double X,Y,v,sita;
double cal(double x)
{
double t,a;
t=X/(v*cos(x));
a=v*sin(x)*t-0.5*g*t*t;
return a;
}
double triplediv()
{
double mid1,mid2,l,r,h1,h2;
l=0;
r=0.5*pi;
while((r-l)>eps)
{
mid1=(2*l+r)/3;
mid2=(l+2*r)/3;
h1=cal(mid1);
h2=cal(mid2);
if(h1>h2)
r=mid2;
else
l=mid1;
}
sita=l;
return cal(l);
}
void doublediv(double maxy)
{
int i;
double l,r,mid,h;
l=0;
r=sita;
while((r-l)>eps)
{
mid=(l+r)/2;
h=cal(mid);
if(h>Y)
r=mid;
else
l=mid;
}
cout<<setprecision(6)<<fixed<<l<<endl;
}
int main()
{
int t;
double maxy;
cin>>t;
while(t--)
{
cin>>X>>Y>>v;
maxy=triplediv();
if(maxy<Y)
cout<<"-1"<<endl;
else
doublediv(maxy);
}
return 0;
}
感想:没想到还需要用到物理知识。。挺新奇。。