【图像识别与处理】特征点检测之ORB特征提取

本文通过使用ORB算法进行图像特征匹配,展示了如何从两幅图像中提取关键点并计算描述符,然后利用BruteForceMatcher进行匹配,筛选出优质匹配项,并绘制匹配结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ORB算法原理解读

#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <vector>
using namespace cv;
using namespace std;
int main()
{
	Mat img_1 = imread("D:\\image\\img1.jpg");
	Mat img_2 = imread("D:\\image\\img2.jpg");
	if (!img_1.data || !img_2.data)
	{
		cout << "error reading images " << endl;
		return -1;
	}

	ORB orb;
	vector<KeyPoint> keyPoints_1, keyPoints_2;
	Mat descriptors_1, descriptors_2;

	orb(img_1, Mat(), keyPoints_1, descriptors_1);
	orb(img_2, Mat(), keyPoints_2, descriptors_2);
	
	BruteForceMatcher<HammingLUT> matcher;
	vector<DMatch> matches;
	matcher.match(descriptors_1, descriptors_2, matches);

	double max_dist = 0; double min_dist = 100;
	//-- Quick calculation of max and min distances between keypoints
	for( int i = 0; i < descriptors_1.rows; i++ )
	{ 
		double dist = matches[i].distance;
		if( dist < min_dist ) min_dist = dist;
		if( dist > max_dist ) max_dist = dist;
	}
	printf("-- Max dist : %f \n", max_dist );
	printf("-- Min dist : %f \n", min_dist );
	//-- Draw only "good" matches (i.e. whose distance is less than 0.6*max_dist )
	//-- PS.- radiusMatch can also be used here.
	std::vector< DMatch > good_matches;
	for( int i = 0; i < descriptors_1.rows; i++ )
	{ 
		if( matches[i].distance < 0.6*max_dist )
		{ 
			good_matches.push_back( matches[i]); 
		}
	}

	Mat img_matches;
	drawMatches(img_1, keyPoints_1, img_2, keyPoints_2,
		good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
		vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
	imshow( "Match", img_matches);
	cvWaitKey();
	return 0;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穿着帆布鞋也能走猫步

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值