缓存穿透与缓存雪崩

本文探讨了缓存穿透的原理与危害,提出通过哈希校验、布隆过滤器及临时缓存策略来解决缓存穿透问题,并分析了缓存失效时的应对措施,以减轻对数据库的压力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

缓存穿透:

缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,如果有人恶意破坏,很可能直接对DB造成影响,这就失去了缓存的意义。

解决办法:

对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃。

还有最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。

或者也可以采用一个更为简单粗暴的方法,如果一个查询返回的数据为空(不管是数 据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。


缓存失效:

如果缓存集中在一段时间内失效,DB的压力凸显。

这个没有完美解决办法,但可以分析用户行为,尽量让失效时间点均匀分布。大多数系统设计者考虑用加锁或者队列的方式保证缓存的单线程(进程)写,从而避免失效时大量的并发请求落到底层存储系统上。

当发生大量的缓存穿透,例如对某个失效的缓存的大并发访问就造成了缓存雪崩。

缓存失效时的雪崩效应对底层系统的冲击非常可怕。遗憾的是,这个问题目前并没有很完美的解决方案。
<think>嗯,用户想深入理解缓存击穿、穿透雪崩的区别及解决方案。从对话历史看,我之前已经给过详细对比表格和解决方案,但用户可能希望更直观的总结。 用户提供的引用内容很全面,特别是引用[4]的对比表格非常清晰。需要突出三个问题的核心差异点: 1. 穿透是查存在的数据(恶意请求) 2. 击穿是热点key失效(突发流量) 3. 雪崩是大面积key同时失效(系统风险) 注意到用户特别标注要"区别+解决方案"并列呈现,所以考虑设计双栏结构:左栏特征描述,右栏对应解决方案。这样对比更鲜明。 关于解决方案的优级: - 穿透首选布隆过滤器(引用[1][4]都强调) - 击穿重点在锁机制和逻辑过期(引用[3]示例代码很实用) - 雪崩需要TTL随机化+多级缓存(引用[2][5]都提到) 用户可能对实际场景更关注,准备补充电商案例: 1. 穿透:黑客用负数ID刷接口 2. 击穿:iPhone新品开售时缓存失效 3. 雪崩:整点秒杀活动缓存集中过期 最后要强调引用[5]的实践建议:监控命中率比事后补救更重要。考虑在总结部分加入这个观点。</think>以下是缓存击穿、缓存穿透缓存雪崩的核心区别及解决方案的对比总结: --- ### **一、核心区别对比** | **问题类型** | **触发条件** | **本质原因** | **典型场景** | **影响范围** | |----------------|---------------------------------------|-------------------------------|-------------------------------|-----------------------| | **缓存穿透** | 查询**存在的数据**(数据库也无记录) | 恶意攻击或业务异常[^4] | 频繁请求非法ID(如`user_id=-1`) | 持续冲击数据库 | | **缓存击穿** | **热点Key过期瞬间**遭遇高并发请求 | 单点失效引发雪崩效应[^3] | 热搜商品/秒杀活动Key过期 | 数据库瞬时压力剧增 | | **缓存雪崩** | **大量Key同时过期** | 缓存集中失效[^2] | 促销活动结束大批商品缓存失效 | 数据库被压垮甚至宕机 | > **关键公式**: > - 缓存雪崩风险:$$ Risk = \frac{N_{expired}}{N_{total}} \times QPS $$ > ($N_{expired}$:同时过期Key数量,$QPS$:请求量) --- ### **二、针对性解决方案** #### **1. 缓存穿透解决方案** - **布隆过滤器 (Bloom Filter)** - 前置位数组存储所有合法Key的哈希值,拦截非法请求[^4] - 内存优化:1亿Key仅需约120MB - 误判率公式:$$ P \approx \left(1 - e^{-\frac{k \cdot n}{m}}\right)^k $$ ($k$:哈希函数数量,$n$:元素数量,$m$:位数组大小) - **缓存空值 (Null Caching)** ```java // 伪代码示例 Object data = cache.get(key); if (data == null) { data = db.query(key); if (data == null) { cache.set(key, "NULL", 300); // 缓存空值300秒 } } ``` - 对空结果设置短时缓存(需定期清理)[^3] #### **2. 缓存击穿解决方案** - **互斥锁 (Mutex Lock)** ```python # Redis分布式锁伪代码 if not cache.exists(key): if redis.setnx("lock:"+key, 1, ex=10): # 获取锁 data = db.query(key) cache.set(key, data, ttl=60+randint(0,30)) # 回填缓存并随机TTL redis.delete("lock:"+key) else: time.sleep(0.05) # 等待50ms后重试 return cache.get(key) ``` - 仅允许一个线程重建缓存[^1] - **逻辑过期时间** - 缓存Value结构:`{"data": "真实数据", "expire": 1717020800}` - 异步更新:线程发现过期时触发更新,直接返回旧数据 #### **3. 缓存雪崩解决方案** - **TTL随机化** $$ TTL_{new} = TTL_{base} + random(0, 300) $$ 避免批量Key同时过期[^2] - **多级缓存架构** ```mermaid graph LR A[客户端] --> B[本地缓存 Caffeine] B --> C{命中?} C -->|是| D[返回数据] C -->|否| E[Redis集群] E --> F{命中?} F -->|是| D F -->|否| G[数据库] G --> H[回填各级缓存] ``` - 本地缓存 → Redis → 数据库 三级拦截[^5] - **熔断降级** 监控数据库QPS,超过阈值时启动限流(如Sentinel) --- ### **三、通用防御策略** | **策略** | 穿透 | 击穿 | 雪崩 | 实现复杂度 | |------------------|------|------|------|------------| | 布隆过滤器 | ✅✅✅ | ❌ | ❌ | 中 | | 互斥锁 | ❌ | ✅✅✅ | △ | 高 | | 缓存空值 | ✅✅ | ❌ | ❌ | 低 | | TTL随机化 | ❌ | △ | ✅✅✅ | 低 | | 多级缓存 | ✅ | ✅✅ | ✅✅ | 高 | | 热点Key永过期 | ❌ | ✅✅ | ❌ | 中 | > **设计原则**: > - 穿透:**过滤非法请求**(布隆过滤器为核心) > - 击穿:**保障热点数据高可用**(锁+逻辑过期) > - 雪崩:**分散失效风险**(TTL随机化+多级缓存)[^4][^5] --- ### **四、典型场景案例** 1. **缓存穿透** - **场景**:黑客用脚本遍历用户ID(包括负数) - **方案**:布隆过滤器拦截非法ID请求[^1] 2. **缓存击穿** - **场景**:双11零点热门商品缓存失效 - **方案**:Redis分布式锁控制单线程回填缓存[^3] 3. **缓存雪崩** - **场景**:整点秒杀活动缓存集中过期 - **方案**:基础TTL=1小时 + 随机300秒偏移量[^2] --- ### **总结** | **问题** | **核心矛盾** | **必选方案** | |----------------|-----------------------|----------------------------| | 缓存穿透 | 非法请求穿透防线 | 布隆过滤器 + 空值缓存 | | 缓存击穿 | 单点失效引发雪崩 | 互斥锁 + 逻辑过期 | | 缓存雪崩 | 批量失效压垮数据库 | TTL随机化 + 多级缓存架构 | > 实践中需结合**监控告警**(缓存命中率、DB QPS)和**熔断降级**机制[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值