An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.


Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
总结:
- 平衡二叉树模块,背吧:①创建结构体——②生成一个新结点(node* newNode(int v))——③获得以root为根的高度height(int getHeight(node* root))——④更新结点的高度(void updateHeight(node* root))——⑤计算平衡因子(int getBalanceFactor(node* root))——⑥左旋(void L(node* &root))、右旋(void R(node* &root))——⑦插入权值为v的结点(v比根权值小,LL2,1,LR2,-1型,v比根权值大,RR-2,-1,RL-2,1型)(void insert(node* &root,int v))——⑧AVL树的创建(node* Create(int data[],int n))—— ⑨主函数
代码:
#include <stdio.h>
#include <algorithm>
using namespace std;
struct node{
int v;
int height;
node *lchild,*rchild;
} *root;
//生成一个新结点,v为结点权值
node* newNode(int v){
node* Node = new node;
Node->v=v;
Node->height=1;
Node->lchild=Node->rchild=NULL;
return Node;
}
//获取以root为根结点的子树当前的height
int getHeight(node* root){
if(root==NULL) return 0; //空结点高度是0
return root->height;
}
//更新结点root的height
void updateHeight(node* root){
//max(左孩子结点的height,右孩子结点的height)+1
root->height=max(getHeight(root->lchild),getHeight(root->rchild))+1;
}
//计算结点的平衡因子
int getBalanceFactor(node* root){
//左子树高度-右子树高度
return getHeight(root->lchild)-getHeight(root->rchild);
}
//左旋
void L(node* &root){
node* temp=root->rchild;
root->rchild=temp->lchild;
temp->lchild=root;
updateHeight(root);
updateHeight(temp);
root=temp;
}
//右旋
void R(node* &root){
node* temp=root->lchild;
root->lchild=temp->rchild;
temp->rchild=root;
updateHeight(root);
updateHeight(temp);
root=temp;
}
//插入权值为v的结点
void insert(node* &root,int v) {
if(root==NULL){
root=newNode(v);
return;
}
if(v<root->v){ //v比根结点权值小
insert(root->lchild,v);
updateHeight(root);
if(getBalanceFactor(root)==2){
if(getBalanceFactor(root->lchild)==1){ //LL型
R(root);
}
else if(getBalanceFactor(root->lchild)==-1){ //LR型
L(root->lchild);
R(root);
}
}
}else{ //v比根结点权值大
insert(root->rchild,v);
updateHeight(root);
if(getBalanceFactor(root)==-2){
if(getBalanceFactor(root->rchild)==-1){ //RR型
L(root);
}
else if(getBalanceFactor(root->rchild)==1){ //RL型
R(root->rchild);
L(root);
}
}
}
}
//AVL树的建立
node* Create(int data[],int n){
node* root=NULL;
for(int i=0;i<n;i++){
insert(root,data[i]); //插入AVL树
}
return 0;
}
int main(){
int n,v;
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d",&v);
insert(root,v);
}
printf("%d\n",root->v);
return 0;
}
本文详细介绍了AVL树的实现原理,包括结点的创建、高度更新、平衡因子计算、旋转操作以及插入过程中的平衡调整。通过具体代码示例,展示了如何构建并维护一棵平衡的AVL树。
1724

被折叠的 条评论
为什么被折叠?



