朴素贝叶斯算法---统计学习方法例4.1计算(MATLAB)

个人学习记录,只进行了书上例题的结果验证,没有改写成函数。

%%%%%%    朴素贝叶斯算法     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc
clear

X = {1,'S';1,'M';1,'M';1,'S';1,'S';2,'S';2,'M';2,'M';2,'L';2,'L';3,'L';3,'M';3,'M';3,'L';3,'L'};
Y = [-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,1,-1]';
x = {2,'S'};  
%%%%%%%  输入参数X:训练数据的特征集   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%          Y:训练数据的目标集   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%          x:待分类数据的特征   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%  输出参数y:待分类数据的类别   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Num = length(Y); %训练样本总数
%计算正负类的先验概率
PositiveIndex = find(Y == 1);
NegativeIndex = find(Y == -1);
PositiveNum = length(PositiveIndex);  %训练集中正类的个数
NegativeNum = length(NegativeIndex); %训练集中负类的个数

format rat

PositiveP = PositiveNum/Num; %正类的先验概率        
NegativeP = NegativeNum/Num; %负类的先验概率

%计算条件概率,即类别确定的条件下,训练集中不同特征取值的概率
PositiveX1 = X(PositiveIndex,1); %正类对应的特征1
PositiveX2 = X(PositiveIndex,2); %正类对应的特征2
NegativeX1 = X(NegativeIndex,1); %负类对应的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值