实数集合: R \mathbb R R
a r g m i n ⏟ p i , q j ∑ i , j ( m i j − μ − b i − b j − q j T p i – q j T ∣ N ( i ) ∣ − 1 / 2 ∑ s ∈ N ( i ) y s ) 2 + λ ( ∣ ∣ p i ∣ ∣ 2 2 + ∣ ∣ q j ∣ ∣ 2 2 + ∣ ∣ b i ∣ ∣ 2 2 + ∣ ∣ b j ∣ ∣ 2 2 + ∑ s ∈ N ( i ) ∣ ∣ y s ∣ ∣ 2 2 ) \underbrace{arg\;min}_{p_i,q_j}\;\sum\limits_{i,j}(m_{ij}-\mu-b_i-b_j-q_j^Tp_i – q_j^T|N(i)|^{-1/2}\sum\limits_{s \in N(i)}y_{s})^2+ \lambda(||p_i||_2^2 + ||q_j||_2^2 + ||b_i||_2^2 + ||b_j||_2^2 + \sum\limits_{s \in N(i)}||y_{s}||_2^2) pi,qj argmini,j∑(mij−μ−bi−bj−qjTpi–qjT∣N(i)∣−1/2s∈N(i)∑ys)2+λ(∣∣pi∣∣22+∣∣qj∣∣22+∣∣bi∣∣22+∣∣bj∣∣22+s∈N(i)∑∣∣ys∣∣22)
B i l i n e a r ( x , y ) = x ⊙ W × y + b Bilinear(x,y)=x⊙W\times y+b Bilinear(x,y)=x⊙W×y+b
P ( z ∣ G , S ) log P ( G ∣ S ) = log ∫ P ( G ∣ z , S ) P ( z ∣ S ) d z = log ∫ P ( G ∣ z , S ) P ( z ∣ S ) q ( z ) q ( z ) d z = log E z ∼ q ( z ) [ P ( G ∣ z , S ) P ( z ∣ S ) q ( z ) ] ≥ E z ∼ q ( z ) [ log P ( G ∣ z , S ) P ( z ∣ S ) q ( z ) ] = E z ∼ q ( z ) [ log P ( G ∣ z , S ) ] + E z ∼ q ( z ) [ log P ( z ∣ S ) q ( z ) ] = E z ∼ q ( z ) [ log P ( G ∣ z , S ) ] − K L [ q ( z ) ∣ ∣ P ( z ∣ S ) ] \begin{aligned} P(z|G,S) \log P(G| S) &= \log \int P(G|z,S)P(z|S)dz \\ &=\log \int P(G|z,S)P(z|S)\frac {q(z)}{q(z)}dz\\ &=\log \mathbb{E}_{z \sim q(z) }\left [ \frac{P(G|z,S)P(z|S)}{q(z)} \right]\\ &\ge \mathbb{E}_{z \sim q(z) }\left [ \log\frac{P(G|z,S)P(z|S)}{q(z)} \right]\\ &=\mathbb{E}_{z \sim q(z) }\left [ \log P(G|z,S) \right]+\mathbb{E}_{z \sim q(z) }\left [ \log\frac{P(z|S)}{q(z)} \right]\\ &=\mathbb{E}_{z \sim q(z) }\left [ \log P(G|z,S) \right]-\rm{KL}\it \left [ q(z)||P(z|S) \right]\\ \end{aligned} P(z∣G,S)logP(G∣S)=log∫P(G∣z,S)P(z∣S)dz=log∫P(G∣z,S)P(z∣S)q(z)q(z)dz=logEz∼q(z)[q(z)P(G∣z,S)P(z∣S)]≥Ez∼q(z)[logq(z)P(G∣z,S)P(z∣S)]=Ez∼q(z)[logP(G∣z,S)]+Ez∼q(z)[logq(z)P(z∣S)]=Ez∼q(z)[logP(G∣z,S)]−KL[q(z)∣∣P(z∣S)]
log P ( G ∣ S ) ≥ E z ∼ q ( z ) [ log P ( G ∣ z , S ) ] − K L [ q ( z ) ∣ ∣ P ( z ∣ S ) ] \begin{aligned} \log P(G| S) &\ge \mathbb{E}_{z \sim q(z) }\left [ \log P(G|z,S) \right]-\rm{KL}\it \left [ q(z)||P(z|S) \right]\\ \end{aligned} logP(G∣S)≥Ez∼q(z)[logP(G∣z,S)]−KL[q(z)∣∣P(z∣S)]
E z ∼ q ( z ) [ log P ( G ∣ z , S ) ] = E ϵ ∼ N ( 0 , 1 ) [ log P ( G ∣ μ + ϵ σ , S ) ] \begin{aligned} \mathbb{E}_{z \sim q(z) }\left [ \log P(G|z,S) \right]=\mathbb{E}_{\epsilon \sim N(0,1) }\left [ \log P(G|\mu+\epsilon\sigma,S) \right] \end{aligned} Ez∼q(z)[logP(G∣z,S)]=Eϵ∼N(0,1)[logP(G∣μ+ϵσ,S)]
∂ J ∂ θ = − 1 m ∑ i = 1 m ∂ J i ∂ θ = 1 m ∑ i = 1 m ( h ( i ) − y ( i ) ) x ( i ) (11) \frac{\partial J}{\partial \boldsymbol \theta}=-\frac1m\sum_{i=1}^m \frac{\partial J_i}{\partial \boldsymbol \theta}=\frac1m\sum_{i=1}^m (h^{(i)}-y^{(i)})\boldsymbol x^{(i)} \tag{11} ∂θ∂J=−m1i=1∑m∂θ∂Ji=m1i=1∑m(h(i)−y(i))x(i)(11)
l o g ( P ( A ) ) × l e n 0.6 + l o g ( P ( B ) ) ( l e n + 1 ) 0.6 \frac{log(P(A)) \times len^{0.6}+log(P(B))}{(len+1)^{0.6}} (len+1)0.6log(P(A))×len0.6+log(P(B))