Red and Black
Problem Description
There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can’t move on red tiles, he can move only on black tiles.
Write a program to count the number of black tiles which he can reach by repeating the moves described above.
Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20.
There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows.
‘.’ - a black tile
‘#’ - a red tile
‘@’ - a man on a black tile(appears exactly once in a data set)
Output
For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself).
Sample Input
6 9
….#.
…..#
……
……
……
……
……
#@…#
.#..#.
11 9
.#………
.#.#######.
.#.#…..#.
.#.#.###.#.
.#.#..@#.#.
.#.#####.#.
.#…….#.
.#########.
………..
11 6
..#..#..#..
..#..#..#..
..#..#..###
..#..#..#@.
..#..#..#..
..#..#..#..
7 7
..#.#..
..#.#..
###.###
…@…
###.###
..#.#..
..#.#..
0 0
Sample Output
45
59
6
13
题意:
以’@’符号为起点,’.’可以走,’#’不能走,方向为上下左右,问最多可以走多少格子。
解题思路:
这么水的。。直接BFS就好了,注意下H和W的次序就好.
Code:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int maxn=20+5;
int vis[maxn][maxn];
char mp[maxn][maxn];
int n,m;
int dx[]= {0,1,0,-1};
int dy[]= {1,0,-1,0};
struct Node
{
int x,y;
};
queue<Node> Q;
bool check(int x,int y)
{
if(x<0||x>=m||y<0||y>=n)
return false;
if(vis[x][y])
return false;
if(mp[x][y]!='.')
return false;
return true;
}
int BFS(int x1,int y1)
{
vis[x1][y1]=1;
int ans=0;
Q.push((Node){x1,y1});
while(!Q.empty())
{
ans++;
Node &u=Q.front();
Q.pop();
for(int i=0; i<4; i++)
{
int x=u.x+dx[i];
int y=u.y+dy[i];
if(check(x,y))
{
vis[x][y]=1;
Q.push(Node{x,y});
}
}
}
return ans;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(m==0&&n==0)
break;
for(int i=0; i<m; i++)
scanf("%s",mp[i]);
mem(vis,0);
for(int i=0; i<m; i++)
for(int j=0; j<n; j++)
if(mp[i][j]=='@')
{
printf("%d\n",BFS(i,j));
break;
}
}
return 0;
}