NP问题

本文介绍了P类问题和NP类问题的基本概念,并探讨了P是否等于NP这一未解之谜。P类问题指那些能够在多项式时间内解决的问题,而NP类问题则包括那些能在多项式时间内验证解的问题。如果能找到任何一个NP完全问题的多项式时间算法,那么所有NP问题都将变成P类问题。
首先需要介绍P(Polynomial,多项式)问题.P问题是可以在多项式时间内被确定机(通常意义的计算机)解决的问题.NP(Non-Deterministic Polynomial, 非确定多项式)问题,是指可以在多项式时间内被非确定机(他可以猜,他总是能猜到最能满足你需要的那种选择,如果你让他解决n皇后问题,他只要猜n次就能完成----每次都是那么幸运)解决的问题.这里有一个著名的问题----千禧难题之首,是说P问题是否等于NP问题,也即是否所有在非确定机上多项式可解的问题都能在确定机上用多项式时间求解.
这样一来,只要我们找到一个 NPC问题的多项式解,所有的NP问题都可以多项式时间内划归成这个NPC问题,再用多项式时间解决,这样NP就等于P了.
换一种说法,如果一个问题的 复杂度是该问题的一个实例规模n的 多项式函数,则这种可以在多项式时间内解决的问题属于P类问题.通俗地称所有复杂度为多项式时间的问题为易解的问题类,否则为难解的问题。
有些问题很难找到多项式时间的算法(或许根本不存在),例如“找出无向图中 哈密顿回路”问题。但如果给了该问题的一个答案,可以在多项式时间内判断这个答案是否正确。例如说对于哈密顿回路问题,给一个任意的回路,很容易判断它是否是哈密顿回路(只要看是不是所有的顶点都在回路中就可以了)。这里给出NP问题的另一个定义,这种可以在多项式时间内验证一个解是否正确的问题称为NP问题,亦称为验证问题类。
简单的说,存在多项式时间的 算法的一类问题,称之为P类问题;而像 梵塔问题,推销员旅行问题等问题,至今没有找到多项式时间算法解的一类问题,称之为NP问题。同时,P类问题是NP问题的一个子集。
什么是非确定性(Non-Deterministic)问题呢?有些计算问题是确定性的,比如加减乘除之类,你只要按照 公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大 质数的问题。有没有一个 公式,你一套公式,就可以一步步推算出来,下一个 质数应该是多少呢?这样的公式是没有的。再比如,大的 合数 分解质因数的问题,有没有一个 公式,把合数代进去,就直接可以算出,它的 因子各自是多少?也没有这样的公式。这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这也就是非确定性问题。而这些问题的通常有个 算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在 多项式(polynomial)时间内算出来,就叫做多项式非确定性问题。而如果这个问题的所有可能答案,都是可以在多项式时间内进行正确与否的验算的话,就叫完全多项式非确定问题。完全多项式非确定性问题可以用 穷举法得到答案,一个个检验下去,最终便能得到结果。但是这样算法的复杂程度,是指数关系,因此计算的时间随问题的复杂程度成指数的增长,很快便变得不可计算了。
人们发现,所有的完全 多项式非确定性问题,都可以转换为一类叫做满足性问题的 逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在指数时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。解决这个猜想,无非两种可能,一种是找到一个这样的算法,只要针对某个特定NP完全问题找到一个算法,所有这类问题都可以迎刃而解了,因为他们可以转化为同一个问题。另外的一种可能,就是这样的算法是不存在的。那么就要从数学理论上证明它为什么不存在。
有些看来好像是非 多项式的问题,其实是多项式问题,只是人们一时还不知道它的多项式解而已。

考虑可再生能源出力不确定性的商业园区用户需求响应策略(Matlab代码实现)内容概要:本文围绕“考虑可再生能源出力不确定性的商业园区用户需求响应策略”展开,结合Matlab代码实现,研究在可再生能源(如风电、光伏)出力具有不确定性的背景下,商业园区如何制定有效的需求响应策略以优化能源调度和提升系统经济性。文中可能涉及不确定性建模(如场景生成与缩减)、优化模型构建(如随机规划、鲁棒优化)以及需求响应机制设计(如价格型、激励型),并通过Matlab仿真验证所提策略的有效性。此外,文档还列举了大量相关的电力系统、综合能源系统优化调度案例与代码资源,涵盖微电网调度、储能配置、负荷预测等多个方向,形成一个完整的科研支持体系。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源系统规划与运行的工程技术人员。; 使用场景及目标:①学习如何建模可再生能源的不确定性并应用于需求响应优化;②掌握使用Matlab进行商业园区能源系统仿真与优化调度的方法;③复现论文结果或开展相关课题研究,提升科研效率与创新能力。; 阅读建议:建议结合文中提供的Matlab代码实例,逐步理解模型构建与求解过程,重点关注不确定性处理方法与需求响应机制的设计逻辑,同时可参考文档中列出的其他资源进行扩展学习与交叉验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值