Pascal's Triangle
Given numRows, generate the first numRows of Pascal's triangle.
For example, given numRows = 5,
Return
[ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ]
class Solution {
public:
vector<vector<int> > generate(int numRows)
{
vector<vector<int> > result;
if(numRows <= 0)
return result;
vector<int> row1(1,1);
vector<int> row2(2,1);
if(numRows >= 1)
result.push_back(row1);
if(numRows >= 2)
result.push_back(row2);
vector<int> pre = row2;
vector<int> next;
if(numRows >= 3)
{
for(int i = 3; i <= numRows; ++ i)
{
for(size_t j = 0; j < pre.size()-1; ++ j)
next.push_back(pre[j]+pre[j+1]);
next.insert(next.begin(),1);
next.push_back(1);
result.push_back(next);
pre = next;
next.clear();
}
}
return result;
}
};
vector<vector<int> > generate(int numRows)
{
vector<vector<int> > result;
if(numRows <= 0)
return result;
result.resize(numRows);//定义大小
for(int i = 0; i < numRows; ++ i)
result[i].assign(i+1, 1);//每行分配1的个数为i+1
for(int i = 0; i < numRows; ++ i)
{
for(int j = 1; j <= i-1; ++ j )//除了第一第二行,其他每行都是从j=1到j=i-1计算的,首尾为1
result[i][j] = result[i-1][j-1] + result[i-1][j];
}
return result;
}
Pascal's Triangle II
Given an index k, return the kth row of the Pascal's triangle.
For example, given k = 3,
Return [1,3,3,1]
.
Note:
Could you optimize your algorithm to use only O(k) extra space?
我写的就是当前行利用前一行的数字进行计算,不可能是O(K),所以没意义,别人的方法我想不到,不过很巧妙,就是依次从当前位置往前去更新那些值,其实也就是用O(K)的空间,但是还是从第1行开始依次生成,0位置不变,j == i也就是新开始的行的最后一个位置为j-1前一行的最后一个值,即1,其他位置从后往前依次更新为[ j ] =[ (j-1) ]+ [ j ]。
vector<int> getRow(int rowIndex)
{
vector<int> ans;
if(rowIndex < 0)
return ans;
ans.resize(rowIndex+1);
ans[0] = 1;
for(int i = 1; i <= rowIndex ; ++i)
for(int j = i; j >=0 ; --j)
{
if(j == i)
ans[j] = ans[j-1];
else if(j == 0)
ans[j] = ans[j];
else
ans[j] = ans[j-1]+ans[j];
}
return ans;
}