转自:http://www.linuxidc.com/Linux/2015-03/114669p6.htm
1、 输入数据分析
输入文件数据示例:
child parent
Tom Jack
Jack Alice
Jack Jesse
第1列表示child,第2列表示parent,我们需要根据child和parent的关系得出child和grantparent的关系。比如说Tom的parent是Jack,Jack的parent是Alice和Jesse,由此我们可以得出Tom的grantparent是{Alice,Jesse}。
2、 Map过程
首先使用默认的TextInputFormat类对输入文件进行处理,得到文本中每行的偏移量及其内容。Map过程首先将输入分割成child和parent,然后正序输出一次作为右表,反序输出一次作为左表,需要注意的是在输出的value中必须加上左右表区别标志,其中左表标识符为1,右表标识符为2,如图所示。
Map端核心代码实现如下,详细源码请参考:SingletonTableJoin\src\com\zonesion\tablejoin\SingletonTableJoin.java。
@Override
protected void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
String childName = new String();
String parentName = new String();
String relationType = new String();
String line = value.toString();
String[] values = line.split(" ");
if(values.length >= 2){
if(values[0].compareTo("child") != 0){
childName = values[0];
parentName = values[1];
relationType = "1";
context.write(new Text(parentName), new Text(relationType+" "+childName));//<"Lucy","1 Tom">
relationType = "2";
context.write(new Text(childName), new Text(relationType+" "+parentName));//<"Jone","2 Lucy">
}
}
}
3、 Reduce过程
Reduce过程首先对输入< key,values >即<”Lucy”,[“1 Tom”,”2 Mary”,”2 Ben”]>的values值进行遍历获取到单元信息(例如”1 Tom”),然后将单元信息中的用户ID(例如Tom)按照左表、右表标识符分别存入到grandChild集合和grandParent集合,最后对grandChild集合和grandParent集合进行笛卡尔积运算得到child与grandParent的关系,并进行输出,如图所示。
Reduce端核心代码如下,详细源码请参考:SingletonTableJoin\src\com\zonesion\tablejoin\SingletonTableJoin.java。
public static class JoinReducer extends Reducer<Text, Text, Text, Text>{
@Override
protected void reduce(Text key, Iterable<Text> values,Context context)
throws IOException, InterruptedException {
List<String> grandChild = new ArrayList<String>();//孙子
List<String> grandParent = new ArrayList<String>();//爷爷
Iterator<Text> it = values.iterator();//["1 Tom","2 Mary","2 Ben"]
while(it.hasNext()){
String[] record = it.next().toString().split(" ");//"1 Tom"---[1,Tom]
if(record.length == 0) continue;
if(record[0].equals("1")){//左表,取出child放入grandchild
grandChild.add(record[1]);
}else if(record[0].equals("2")){//右表,取出parent放入grandParent
grandParent.add(record[1]);
}
}
//grandchild 和 grandparent数组求笛卡尔积
if(grandChild.size() != 0 && grandParent.size() != 0){
for(int i=0;i<grandChild.size();i++){
for(int j=0;j<grandParent.size();j++){
context.write(new Text(grandChild.get(i)), new Text(grandParent.get(j)));
}
}
}
}
}
4、 驱动实现
驱动实现核心代码如下,详细源码请参考:SingletonTableJoin\src\com\zonesion\tablejoin\SingletonTableJoin.java。
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
if(otherArgs.length != 2){
System.err.println("Usage: SingletonTableJoin <in> <out>");
}
Job job = new Job(conf,"SingletonTableJoin Job");
job.setJarByClass(SingletonTableJoin.class);
job.setMapperClass(JoinMapper.class);
job.setReducerClass(JoinReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : -1);
}
5、部署运行
1)启动Hadoop集群
[hadoop@K-Master ~]$ start-dfs.sh
[hadoop@K-Master ~]$ start-mapred.sh
[hadoop@K-Master ~]$ jps
5283 SecondaryNameNode
5445 JobTracker
5578 Jps
5109 NameNode
2)部署源码
#设置工作环境
[hadoop@K-Master ~]$ mkdir -p /usr/hadoop/workspace/MapReduce
#部署源码
将SingletonTableJoin 文件夹拷贝到/usr/hadoop/workspace/MapReduce/ 路径下;
… 你可以直接 下载 SingletonTableJoin
3)编译文件
#切换工作目录
[hadoop@K-Master ~]$ cd /usr/hadoop/workspace/MapReduce/SingletonTableJoin
#编译文件
[hadoop@K-Master SingletonTableJoin]$ javac -classpath /usr/hadoop/hadoop-core-1.2.1.jar:/usr/hadoop/lib/commons-cli-1.2.jar -d bin src/com/zonesion/tablejoin/SingletonTableJoin.java
#查看编译文件
[hadoop@K-Master SingletonTableJoin]$ ls -la bin/com/zonesion/tablejoin/
总用量 12
drwxrwxr-x 2 hadoop hadoop 122 7月 31 11:02 .
drwxrwxr-x 3 hadoop hadoop 22 7月 31 11:02 ..
-rw-rw-r-- 1 hadoop hadoop 1856 7月 31 11:02 SingletonTableJoin.class
-rw-rw-r-- 1 hadoop hadoop 2047 7月 31 11:02 SingletonTableJoin$JoinMapper.class
-rw-rw-r-- 1 hadoop hadoop 2074 7月 31 11:02 SingletonTableJoin$JoinReducer.class
4)打包jar文件
[hadoop@K-Master SingletonTableJoin]$ jar -cvf SingletonTableJoin.jar -C bin/ .
added manifest
adding: com/(in = 0) (out= 0)(stored 0%)
adding: com/zonesion/(in = 0) (out= 0)(stored 0%)
adding: com/zonesion/tablejoin/(in = 0) (out= 0)(stored 0%)
adding: com/zonesion/tablejoin/SingletonTableJoin$JoinReducer.class(in = 2217) (out= 1006)(deflated 54%)
adding: com/zonesion/tablejoin/SingletonTableJoin$JoinMapper.class(in = 1946) (out= 823)(deflated 57%)
adding: com/zonesion/tablejoin/SingletonTableJoin.class(in = 1856) (out= 955)(deflated 48%)
5)上传输入文件
[hadoop@K-Master SingletonTableJoin]$ hadoop fs -mkdir /user/hadoop/SingletonTableJoin/input/
[hadoop@K-Master SingletonTableJoin]$ hadoop fs -put input/file01.txt /user/hadoop/SingletonTableJoin/input/
[hadoop@K-Master SingletonTableJoin]$ hadoop fs -ls /user/hadoop/SingletonTableJoin/input/
Found 1 items
-rw-r--r-- 1 hadoop supergroup163 2014-07-31 11:08 /user/hadoop/SingletonTableJoin/input/file01.txt
6)运行Jar文件
[hadoop@K-Master SingletonTableJoin]$ hadoop jar SingletonTableJoin.jar com.zonesion.tablejoin.SingletonTableJoin SingletonTableJoin/input SingletonTableJoin/output
14/07/31 14:47:55 INFO input.FileInputFormat: Total input paths to process : 1
14/07/31 14:47:55 INFO util.NativeCodeLoader: Loaded the native-hadoop library
14/07/31 14:47:55 WARN snappy.LoadSnappy: Snappy native library not loaded
14/07/31 14:47:56 INFO mapred.JobClient: Running job: job_201407310921_0012
14/07/31 14:47:57 INFO mapred.JobClient: map 0% reduce 0%
14/07/31 14:48:00 INFO mapred.JobClient: map 100% reduce 0%
14/07/31 14:48:07 INFO mapred.JobClient: map 100% reduce 33%
14/07/31 14:48:08 INFO mapred.JobClient: map 100% reduce 100%
14/07/31 14:48:08 INFO mapred.JobClient: Job complete: job_201407310921_0012
.....
特别注意:在指定主类时,一定要使用完整包名com.zonesion.tablejoin.SingletonTableJoin,不然提示找不到。
7)查看输出结果
[hadoop@K-Master SingletonTableJoin]$ hadoop fs -cat SingletonTableJoin/output/part-r-00000
Tom Alice
Tom Jesse
Jone Alice
Jone Jesse
Tom Mary
Tom Ben
Jone Mary
Jone Ben
Philip Alice
Philip Jesse
Mark Alice
Mark Jesse
