激活函数ReLU、Leaky ReLU、PReLU和RReLU

本文详细介绍了激活函数中的ReLU系列,包括ReLU、ELU、Leaky ReLU、PReLU和RReLU。ReLU因其非饱和特性解决了梯度消失问题,但存在死亡ReLU问题。Leaky ReLU通过固定斜率改善这个问题,而PReLU则允许斜率根据数据动态调整,进一步提高性能。PReLU在ImageNet分类任务中表现优越。

“激活函数”能分成两类——“饱和激活函数”和“非饱和激活函数”。

sigmoid和tanh是“饱和激活函数”,而ReLU及其变体则是“非饱和激活函数”。使用“非饱和激活函数”的优势在于两点:
    1.首先,“非饱和激活函数”能解决所谓的“梯度消失”问题。
    2.其次,它能加快收敛速度。
    Sigmoid函数需要一个实值输入压缩至[0,1]的范围
    σ(x) = 1 / (1 + exp(−x))
    tanh函数需要讲一个实值输入压缩至 [-1, 1]的范围
    tanh(x) = 2σ(2x) − 1

ReLU

    ReLU函数代表的的是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值