poj1195(二维树状数组)

本文探讨了如何使用二维树状数组解决第四代移动电话基站区域内的移动电话数量变化问题,通过输入指令进行矩阵操作并回答查询。重点介绍了算法原理、实现方式以及时间复杂度优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mobile phones
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 12554 Accepted: 5787

Description

Suppose that the fourth generation mobile phone base stations in the Tampere area operate as follows. The area is divided into squares. The squares form an S * S matrix with the rows and columns numbered from 0 to S-1. Each square contains a base station. The number of active mobile phones inside a square can change because a phone is moved from a square to another or a phone is switched on or off. At times, each base station reports the change in the number of active phones to the main base station along with the row and the column of the matrix.

Write a program, which receives these reports and answers queries about the current total number of active mobile phones in any rectangle-shaped area.

Input

The input is read from standard input as integers and the answers to the queries are written to standard output as integers. The input is encoded as follows. Each input comes on a separate line, and consists of one instruction integer and a number of parameter integers according to the following table.

The values will always be in range, so there is no need to check them. In particular, if A is negative, it can be assumed that it will not reduce the square value below zero. The indexing starts at 0, e.g. for a table of size 4 * 4, we have 0 <= X <= 3 and 0 <= Y <= 3.

Table size: 1 * 1 <= S * S <= 1024 * 1024
Cell value V at any time: 0 <= V <= 32767
Update amount: -32768 <= A <= 32767
No of instructions in input: 3 <= U <= 60002
Maximum number of phones in the whole table: M= 2^30

Output

Your program should not answer anything to lines with an instruction other than 2. If the instruction is 2, then your program is expected to answer the query by writing the answer as a single line containing a single integer to standard output.

Sample Input

0 4
1 1 2 3
2 0 0 2 2 
1 1 1 2
1 1 2 -1
2 1 1 2 3 
3

Sample Output

3
4

Source

 

本题需要反复修改、查询区间的值,可以考虑用线段树或树状数组,又由于所操作区间是矩阵,故用二维的;

二维树状数组的实现比二维线段树简单,且时空复杂度相同,但前者常数较小,故树状数组占优,此处不详细说明二维树状数组的原理

 

#include <iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include <vector>
using namespace std;
#define MY_MAX 1100
int C[MY_MAX][MY_MAX];
int Lowbit[MY_MAX];
int s;


void Add( int y, int x,int a)
{
 while( y <= s )
 {
  int tmpx = x;
  while( tmpx <= s )
  {
   C[y][tmpx] += a;
   tmpx += Lowbit[tmpx];
  }
  y += Lowbit[y];
 }
}

int QuerySum( int y, int x)
//查询第1行到第y行,第1列到第x列的和
{
 int nSum = 0;
 while( y > 0 )
 {
  int tmpx = x;
  while( tmpx > 0)
  {
   nSum += C[y][tmpx];
   tmpx -= Lowbit[tmpx];
  }
  y -= Lowbit[y];
 }
 return nSum;
}


int main()
{
 int cmd; int x,y,a,l,b,r,t;
 int i,j,k;
 int n1,n2;
 for( i = 1;i <= MY_MAX;i ++ )
  Lowbit[i] = i & ( i ^(i - 1));
 while( true)
 {
  scanf("%d",&cmd);
  switch( cmd)
  {
  case 0:
   scanf("%d",& s);
   memset( C,0,sizeof(C));
   break;
  case 1:
   scanf("%d%d%d",&x ,&y,&a);
   Add( y + 1, x + 1, a);
   break;
  case 2:
   scanf("%d%d%d%d",&l , &b, &r,&t);
   int n1,n2,n3,n4;
   l ++; b++; r ++; t ++;
   //输出小矩形内的元素和
   printf("%d\n",QuerySum(t,r) +QuerySum(b-1,l-1) - QuerySum(t,l-1) - QuerySum(b-1,r));
   break;
  case 3: return 0;
  }
 }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值