hdu3374(最小表示法+KMP)

本文探讨了如何通过字符串左移生成多个字符串,并计算出原始字符串在这些字符串中的排名及出现次数。通过KMP算法找到循环节,进一步计算最小与最大表示的起始下标及其频率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

String Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1296    Accepted Submission(s): 585


Problem Description
Give you a string with length N, you can generate N strings by left shifts. For example let consider the string “SKYLONG”, we can generate seven strings:
String Rank
SKYLONG 1
KYLONGS 2
YLONGSK 3
LONGSKY 4
ONGSKYL 5
NGSKYLO 6
GSKYLON 7
and lexicographically first of them is GSKYLON, lexicographically last is YLONGSK, both of them appear only once.
  Your task is easy, calculate the lexicographically fisrt string’s Rank (if there are multiple answers, choose the smallest one), its times, lexicographically last string’s Rank (if there are multiple answers, choose the smallest one), and its times also.
 

Input
  Each line contains one line the string S with length N (N <= 1000000) formed by lower case letters.
 

Output
Output four integers separated by one space, lexicographically fisrt string’s Rank (if there are multiple answers, choose the smallest one), the string’s times in the N generated strings, lexicographically last string’s Rank (if there are multiple answers, choose the smallest one), and its times also.
 

Sample Input
  
abcder aaaaaa ababab
 

Sample Output
  
1 1 6 1 1 6 1 6 1 3 2 3
 

Author
WhereIsHeroFrom
 

Source
 

Recommend
lcy
 
本题要求一个给定字符串的最小、最大表示的起始下标和其对应的出现次数。
求最小、最大表示的起始下标可以直接改动最小表示法的实现算法;而其对应的出现次数可以先求得最小、最大表示的字符串,然后运用KMP算法找循环节。
最小表示法+KMP
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;

const int MAXN=1000000+100;
int next[MAXN];

//KMP算法中计算next[]数组
void getNext(char *p)
{
    int j,k,len=strlen(p);
    j=0;
    k=-1;
    next[0]=-1;
    while(j<len)
    {
        if(k==-1||p[j]==p[k])
        {
            next[++j]=++k;
        }
        else k=next[k];
    }
}

//返回母串的最小子串的起始位置
int minpresent(char *str)
{
	int i,j,k,len=strlen(str);
	i=0,j=1,k=0;
	while(i<len&&j<len&&k<len)
	{
		if(str[(i+k)%len]==str[(j+k)%len])
			k++;
		else 
		{
			if(str[(i+k)%len]>str[(j+k)%len])
			i=i+k+1;
		    else 
			j=j+k+1;
			if(i==j)j++;
			k=0;
		}
	}
	return ++i<++j?i:j;
}

//返回母串的最大子串的起始位置
int maxpresent(char *str)
{
	int i,j,k,len=strlen(str);
	i=0,j=1,k=0;
	while(i<len&&j<len&&k<len)
	{
		if(str[(i+k)%len]==str[(j+k)%len])
			k++;
		else 
		{
			if(str[(i+k)%len]<str[(j+k)%len])
			i=i+k+1;
		    else 
			j=j+k+1;
			if(i==j)j++;
			k=0;
		}
	}
	return ++i<++j?i:j;
}

char str[MAXN];
char Minstr[MAXN];
char Maxstr[MAXN];

int main()
{
	int n,i,Minid,Minlen,Minans,Maxid,Maxlen,Maxans;
	while(~scanf("%s",str))
	{
		Minstr[0]=0;
		Minid=minpresent(str)-1;
		strcpy(Minstr,str+Minid);
		strncat(Minstr,str,Minid);
	//	printf("Minstr=%s\n",Minstr);
		getNext(Minstr);
		Minlen=strlen(Minstr);
		Minans=1;
		if(Minlen%(Minlen-next[Minlen])==0)
			Minans=Minlen/(Minlen-next[Minlen]);
		//printf("Minid=%d   Minans=%d\n",Minid+1,Minans);

		Maxstr[0]=0;
		Maxid=maxpresent(str)-1;
		strcpy(Maxstr,str+Maxid);
		strncat(Maxstr,str,Maxid);
	//	printf("Maxstr=%s\n",Maxstr);
		getNext(Maxstr);
		Maxlen=strlen(Maxstr);
		Maxans=1;
		if(Maxlen%(Maxlen-next[Maxlen])==0)
			Maxans=Maxlen/(Maxlen-next[Maxlen]);
	//	printf("Maxid=%d   Maxans=%d\n",Maxid+1,Maxans);

		printf("%d %d %d %d\n",Minid+1,Minans,Maxid+1,Maxans);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值