POJ - 3661 Running dp

在限定的时间和疲劳度条件下,Bessie如何通过合理的休息和跑步安排达到最大跑步距离。采用动态规划算法求解最优策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


点击打开链接

Running
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7317 Accepted: 2751

Description

The cows are trying to become better athletes, so Bessie is running on a track for exactly N (1 ≤ N ≤ 10,000) minutes. During each minute, she can choose to either run or rest for the whole minute.

The ultimate distance Bessie runs, though, depends on her 'exhaustion factor', which starts at 0. When she chooses to run in minute i, she will run exactly a distance of Di (1 ≤ Di ≤ 1,000) and her exhaustion factor will increase by 1 -- but must never be allowed to exceed M (1 ≤ M ≤ 500). If she chooses to rest, her exhaustion factor will decrease by 1 for each minute she rests. She cannot commence running again until her exhaustion factor reaches 0. At that point, she can choose to run or rest.

At the end of the N minute workout, Bessie's exaustion factor must be exactly 0, or she will not have enough energy left for the rest of the day.

Find the maximal distance Bessie can run.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 contains the single integer: Di

Output

* Line 1: A single integer representing the largest distance Bessie can run while satisfying the conditions.
 

Sample Input

5 2
5
3
4
2
10

Sample Output

9

Source

USACO 2008 January Silver


设dp[i][j]表示第i分钟疲劳度为j时的最大步行距离

首先对于dp[i][0],显然可以由dp[i-1][0](继续休息)和dp[i-j][j](从第i-j分钟休息到第i分钟)状态转移得来

然后对于一般的dp[i][j]=dp[i-1][j-1]得来

也就是说实际上状态的转移只有在疲劳度j=0的时候才会发生

代码如下

#include<iostream>
#include<string>
#include<cstring>
#include<vector>
#include<map>
#include<algorithm>
#include<queue>
#include<set>
#include<cstdio>
#include<functional>
#include<iomanip>
#include<cmath>
#include<stack>
using namespace std;
const int maxn = (int)(1e5) + 100;
const int inf = 0x3f3f3f3f;
const int mod = 2520;
const double eps = 1e-3;
typedef long long LL;
typedef unsigned long long ull;
int dp[11111][555];
int d[11111];
int main() {
	//freopen("E:\\test.txt", "r", stdin);
	int n, m;
	while (~scanf("%d%d", &n, &m)) {
		for (int i = 1; i <= n; i++)
			scanf("%d", &d[i]);
		memset(dp, 0, sizeof(dp));
		for (int i = 1; i <= n; i++) {
			dp[i][0] = dp[i - 1][0];
			for (int j = 1; j <= m; j++) {
				if (i - j >= 0) {
					dp[i][0] = max(dp[i][0], dp[i - j][j]);
				}
				dp[i][j] = dp[i - 1][j - 1] + d[i];
			}
		}
		printf("%d\n", dp[n][0]);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值