编辑距离算法【莱文斯坦距离、Levenshtein 算法】

编辑距离,又称莱文斯坦距离,是衡量两个字符串相似度的度量,通过计算最少的字符编辑操作(删除、插入、替换)数。在DNA分析、拼写检查、机器翻译等领域有广泛应用。例如,DNA序列比对、拼写纠错和命名实体抽取等场景中,通过计算最小编辑距离来评估字符串的相似性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法概述:

在信息论和计算机科学中,莱文斯坦距离是一种两个字符串序列的距离度量。形式化地说,两个单词的莱文斯坦距离是一个单词变成另一个单词要求的最少单个字符编辑数量(如:删除、插入和替换)。莱文斯坦距离也被称做编辑距离,尽管它只是编辑距离的一种,与成对字符串比对紧密相关。一般来说,编辑距离越小,两个串的相似度越大。

Levenshtein计算相似度公式:1-它们的距离/两个字符串长度的最大值。

Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。

许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。

应用

Levenshtein应用  DNA分析/拼字检查/语音辨识/抄袭侦测

最小编辑距离通常作为一种相似度计算函数被用于多种实际应用中,详细如下: (特别的,对于中文自然语言处理,一般以词为基本处理单元)

  • DNA分析:基因学的一个主要主题就是比较 DNA 序列并尝试找出两个序列的公共部分。如果两个 DNA 序列有类似的公共子序列,那么这些两个序列很可能是同源的。在比对两个序列时,不仅要考虑完全匹配的字符,还要考虑一个序列中的空格或间隙(或者,相反地,要考虑另一个序列中的插入部分)和不匹配,这两个方面都可能意味着突变(mutation)。在序列比对中,需要找到最优的比对(最优比对大致是指要将匹配的数量最大化,将空格和不匹配的数量最小化)。如果要更正式些,可以确定一个分数,为匹配的字符添加分数、为空格和不匹配的字符减去分数。

  • 全局序列比对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值