一维前缀和
一维前缀和就是用另一个数组记录前 i 项的和,然后可以算区间的和,还可以判断是否两个位置之间为0;
例如:
a[ i ]=1 ,2 ,3,4,5
sum[i] = 1,3,6,10,15
则任意区间[L,R]的和为sum[R]-sum[L-1];
前缀和
#include<bits/stdc++.h>
#define ll long long
#define PI 3.141592653589793
#define E 2.718281828459045
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define FO( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define lowbit(a) ((a)&-(a))
typedef unsigned long long ull;
const ll mod=10007;
const ll INF=0x3f3f3f3f;
const ll Max=1e7;
using namespace std;
ll t,n,m,l;
ll st[Max];//记录每个位置的状态
ll sum[Max];
/*queue<ll> q;
stack<ll> s;
//升序队列
priority_queue <int,vector<int>,greater<int> > q;
//降序队列
priority_queue <int,vector<int>,less<int> >q;*/
int main()
{
ios::sync_with_stdio(false);
cin>>n>>m;
for(ll i=1;i<=n;i++)
{
cin>>t;
sum[i]=sum[i-1]+t;
}
while(m--)
{
ll a,b;
cin>>a>>b;
cout<<sum[b]-sum[a-1]<<endl;
}
return 0;
}
二维前缀和
二维前缀和记录的是一个矩阵的和
这是一个二维数组,根据这个二维数组构造的前缀和矩阵就是将该点(x,y)到(1,1)所构成的矩阵的和,如下图
则对于这个前缀和矩阵的公式为:s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];
由图可知黄色区域被加了两次,所以要减去一次,故最后的值为蓝色区域的和,再减去黄色区域,再加上6本身;
例如:对于i=2;j=3;a[1][1]和a[1][2]会被加两次,所以减去是s[1][2]
子矩阵的和
代码:
#include<bits/stdc++.h>
#define ll long long
#define PI 3.141592653589793
#define E 2.718281828459045
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define FO( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define lowbit(a) ((a)&-(a))
#define PII pair<ll ,ll >
#define ft first
#define sd second
typedef unsigned long long ull;
const ll mod=10007;
const ll INF=0x3f3f3f3f;
const ll Max=1e3+10;
using namespace std;
ll t,n,m,l,r;
ll ans;
ll st[Max],copst[Max];//记录每个位置的状态
ll a[Max][Max];
ll sum[Max][Max];
/*queue<ll> q;
stack<ll> s;
//升序队列
priority_queue <int,vector<int>,greater<int> > q;
//降序队列
priority_queue <int,vector<int>,less<int> >q;*/
int main()
{
ios::sync_with_stdio(false);
cin>>n>>m>>t;
for(ll i=1;i<=n;i++)
for(ll j=1;j<=m;j++)
{
cin>>a[i][j];
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];
}
while(t--)
{
ll x1,x2,y1,y2;
cin>>x1>>y1>>x2>>y2;
cout<<sum[x2][y2]-sum[x2][y1-1]-sum[x1-1][y2]+sum[x1-1][y1-1]<<endl;
}
return 0;
}
一维差分
差分是前缀和的逆用
利用两个数组:a[Max]储存原来的数据,b[Max]用来逆用前缀和
a[1]=b[1]
a[2]=b[1]+b[2]
a[3]=b[1]+b[2]+b[3];
…
a[i]=b[1]+…+b[i];
对于区间L-R修改C
只需要b[L]+=C;可以保证a[L]之后的都加上C(包括a[L])
只需要b[R+1]-=C;可以保证a[R+1]后面都减去C(包括a[R+1]);
这两部可以保证区间[L,R]都修改C;
下面是代码
#include<bits/stdc++.h>
#define ll long long
#define PI 3.141592653589793
#define E 2.718281828459045
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define FO( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define lowbit(a) ((a)&-(a))
#define PII pair<ll ,ll >
#define ft first
#define sd second
typedef unsigned long long ull;
const ll mod=10007;
const ll INF=0x3f3f3f3f;
const ll Max=1e5+10;
using namespace std;
ll t,n,m,l,r,k;
ll ans;
ll a[Max];
ll b[Max];
/*queue<ll> q;
stack<ll> s;
//升序队列
priority_queue <int,vector<int>,greater<int> > q;
//降序队列
priority_queue <int,vector<int>,less<int> >q;*/
void insert(ll l,ll r,ll x)
{
b[l]+=x;
b[r+1]-=x;
}
int main()
{
ios::sync_with_stdio(false);
cin>>n>>m;
for(ll i=1;i<=n;i++){cin>>a[i];insert(i,i,a[i]);}
while(m--)
{
cin>>l>>r>>k;
insert(l,r,k);
}
for(ll i=1;i<=l;i++){a[i]=a[i-1]+b[i];cout<<a[i]<<' ';}
cout<<endl;
return 0;
}
模板题
差分
二维差分
对于原数组构建差分数组
对于x1,y1,x2,y2区域进行修改C
(1)b[x1][y1]+=C;
则后面包含b[x1][y1]的矩阵都加上C
(2)b[x1][y2+1]-=C;
(3)b[x2+1][y1]-=C;(黑色区域修改了-C)
(4)b[x2+1][y2+1]+=C;
总结:经过上述操作就得到原矩阵的差分矩阵,再利用二维前缀和的逆用
二维差分
#include<bits/stdc++.h>
#define ll long long
#define PI 3.141592653589793
#define E 2.718281828459045
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define FO( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define lowbit(a) ((a)&-(a))
#define PII pair<ll ,ll >
#define ft first
#define sd second
typedef unsigned long long ull;
const ll mod=10007;
const ll INF=0x3f3f3f3f;
const ll Max=1e3+10;
using namespace std;
ll t,n,m,l,k,q;
ll ans;
ll a[Max][Max];
ll b[Max][Max];
/*queue<ll> q;
stack<ll> s;
//升序队列
priority_queue <int,vector<int>,greater<int> > q;
//降序队列
priority_queue <int,vector<int>,less<int> >q;*/
void insert(ll x1,ll y1,ll x2,ll y2,ll c)
{
b[x1][y1]+=c;
b[x1][y2+1]-=c;
b[x2+1][y1]-=c;
b[x2+1][y2+1]+=c;
}
int main()
{
ios::sync_with_stdio(false);
scanf("%lld%lld%lld",&n,&m,&q);
for(ll i=1;i<=n;i++)
for(ll j=1;j<=m;j++)
scanf("%lld",&a[i][j]);
for(ll i=1;i<=n;i++)
for(ll j=1;j<=m;j++)
{
insert(i,j,i,j,a[i][j]);
}
while(q--)
{ ll x1,x2,y1,y2,c;
scanf("%lld%lld%lld%lld%lld",&x1,&y1,&x2,&y2,&c);
insert(x1,y1,x2,y2,c);
}
for(ll i=1;i<=n;i++)
{for(ll j=1;j<=m;j++)
{
b[i][j]=b[i-1][j]+b[i][j-1]-b[i-1][j-1]+b[i][j];//二维数组前缀和
printf("%lld ",b[i][j]);
} puts("");
}
return 0;
}