设计模式之创建型设计模式

在软件开发中,设计模式提供了一种解决常见问题的标准方法。创建型设计模式是其中的重要类别,专注于对象的创建过程。它们通过将对象的创建与使用分离,提高了系统的灵活性和可维护性。本文将探讨几种主要的创建型设计模式,包括单例模式、工厂方法模式、抽象工厂模式、生成器模式和原型模式。

工厂方法模式

工厂方法模式是一种创建型设计模式, 其在父类中提供一个创建对象的方法, 允许子类决定实例化对象的类型。

 问题

假设你正在开发一款物流管理应用。 最初版本只能处理卡车运输, 因此大部分代码都在位于名为 卡车的类中。

一段时间后, 这款应用变得极受欢迎。 你每天都能收到十几次来自海运公司的请求, 希望应用能够支持海上物流功能。

在程序中新增一个运输类会遇到问题

如果代码其余部分与现有类已经存在耦合关系, 那么向程序中添加新类其实并没有那么容易。

这可是个好消息。 但是代码问题该如何处理呢? 目前, 大部分代码都与 卡车类相关。 在程序中添加 轮船类需要修改全部代码。 更糟糕的是, 如果你以后需要在程序中支持另外一种运输方式, 很可能需要再次对这些代码进行大幅修改。

最后, 你将不得不编写繁复的代码, 根据不同的运输对象类, 在应用中进行不同的处理。

 解决方案

工厂方法模式建议使用特殊的工厂方法代替对于对象构造函数的直接调用 (即使用 new运算符)。 不用担心, 对象仍将通过 new运算符创建, 只是该运算符改在工厂方法中调用罢了。 工厂方法返回的对象通常被称作 “产品”。

乍看之下, 这种更改可能毫无意义: 我们只是改变了程序中调用构造函数的位置而已。 但是, 仔细想一下, 现在你可以在子类中重写工厂方法, 从而改变其创建产品的类型。

但有一点需要注意:仅当这些产品具有共同的基类或者接口时, 子类才能返回不同类型的产品, 同时基类中的工厂方法还应将其返回类型声明为这一共有接口。

举例来说, ​ 卡车Truck和 轮船Ship类都必须实现 运输Transport接口, 该接口声明了一个名为 deliver交付的方法。 每个类都将以不同的方式实现该方法: 卡车走陆路交付货物, 轮船走海路交付货物。 ​ 陆路运输Road­Logistics类中的工厂方法返回卡车对象, 而 海路运输Sea­Logistics类则返回轮船对象。

使用工厂方法模式后的代码结构

只要产品类实现一个共同的接口, 你就可以将其对象传递给客户代码, 而无需提供额外数据。

调用工厂方法的代码 (通常被称为客户端代码) 无需了解不同子类返回实际对象之间的差别。 客户端将所有产品视为抽象的 运输 。 客户端知道所有运输对象都提供 交付方法, 但是并不关心其具体实现方式

抽象工厂模式

抽象工厂模式是一种创建型设计模式, 它能创建一系列相关的对象, 而无需指定其具体类。

问题

假设你正在开发一款家具商店模拟器。 你的代码中包括一些类, 用于表示:

  1. 一系列相关产品, 例如 椅子Chair 、 ​ 沙发Sofa和 咖啡桌Coffee­Table 。

  2. 系列产品的不同变体。 例如, 你可以使用 现代Modern 、 ​ 维多利亚Victorian 、 ​ 装饰风艺术Art­Deco等风格生成 椅子 、 ​ 沙发和 咖啡桌 。

你需要设法单独生成每件家具对象, 这样才能确保其风格一致。 如果顾客收到的家具风格不一样, 他们可不会开心。

此外, 你也不希望在添加新产品或新风格时修改已有代码。 家具供应商对于产品目录的更新非常频繁, 你不会想在每次更新时都去修改核心代码的。

 解决方案

首先, 抽象工厂模式建议为系列中的每件产品明确声明接口 (例如椅子、 沙发或咖啡桌)。 然后, 确保所有产品变体都继承这些接口。 例如, 所有风格的椅子都实现 椅子接口; 所有风格的咖啡桌都实现 咖啡桌接口, 以此类推。

接下来, 我们需要声明抽象工厂——包含系列中所有产品构造方法的接口。 例如 create­Chair创建椅子 、 ​ create­Sofa创建沙发和 create­Coffee­Table创建咖啡桌 。 这些方法必须返回抽象产品类型, 即我们之前抽取的那些接口: ​ 椅子 , ​ 沙发和 咖啡桌等等。

那么该如何处理产品变体呢? 对于系列产品的每个变体, 我们都将基于 抽象工厂接口创建不同的工厂类。 每个工厂类都只能返回特定类别的产品, 例如, ​ 现代家具工厂Modern­Furniture­Factory只能创建 现代椅子Modern­Chair 、 ​ 现代沙发Modern­Sofa和 现代咖啡桌Modern­Coffee­Table对象。

客户端代码可以通过相应的抽象接口调用工厂和产品类。 你无需修改实际客户端代码, 就能更改传递给客户端的工厂类, 也能更改客户端代码接收的产品变体。

假设客户端想要工厂创建一把椅子。 客户端无需了解工厂类, 也不用管工厂类创建出的椅子类型。 无论是现代风格, 还是维多利亚风格的椅子, 对于客户端来说没有分别, 它只需调用抽象 椅子接口就可以了。 这样一来, 客户端只需知道椅子以某种方式实现了 sit­On坐下方法就足够了。 此外, 无论工厂返回的是何种椅子变体, 它都会和由同一工厂对象创建的沙发或咖啡桌风格一致。

最后一点说明: 如果客户端仅接触抽象接口, 那么谁来创建实际的工厂对象呢? 一般情况下, 应用程序会在初始化阶段创建具体工厂对象。 而在此之前, 应用程序必须根据配置文件或环境设定选择工厂类别。

生成器模式

生成器模式是一种创建型设计模式, 使你能够分步骤创建复杂对象。 该模式允许你使用相同的创建代码生成不同类型和形式的对象。

问题

假设有这样一个复杂对象, 在对其进行构造时需要对诸多成员变量和嵌套对象进行繁复的初始化工作。 这些初始化代码通常深藏于一个包含众多参数且让人基本看不懂的构造函数中; 甚至还有更糟糕的情况, 那就是这些代码散落在客户端代码的多个位置。

例如, 我们来思考如何创建一个 房屋House对象。 建造一栋简单的房屋, 首先你需要建造四面墙和地板, 安装房门和一套窗户, 然后再建造一个屋顶。 但是如果你想要一栋更宽敞更明亮的房屋, 还要有院子和其他设施 (例如暖气、 排水和供电设备), 那又该怎么办呢?

最简单的方法是扩展 房屋基类, 然后创建一系列涵盖所有参数组合的子类。 但最终你将面对相当数量的子类。 任何新增的参数 (例如门廊类型) 都会让这个层次结构更加复杂。

另一种方法则无需生成子类。 你可以在 房屋基类中创建一个包括所有可能参数的超级构造函数, 并用它来控制房屋对象。 这种方法确实可以避免生成子类, 但它却会造成另外一个问题。

通常情况下, 绝大部分的参数都没有使用, 这使对于构造函数的调用十分不简洁。 例如, 只有很少的房子有游泳池, 因此与游泳池相关的参数十之八九是毫无用处的。

 解决方案

生成器模式建议将对象构造代码从产品类中抽取出来, 并将其放在一个名为生成器的独立对象中。

该模式会将对象构造过程划分为一组步骤, 比如 build­Walls创建墙壁和 build­Door创建房门创建房门等。 每次创建对象时, 你都需要通过生成器对象执行一系列步骤。 重点在于你无需调用所有步骤, 而只需调用创建特定对象配置所需的那些步骤即可。

当你需要创建不同形式的产品时, 其中的一些构造步骤可能需要不同的实现。 例如, 木屋的房门可能需要使用木头制造, 而城堡的房门则必须使用石头制造。

在这种情况下, 你可以创建多个不同的生成器, 用不同方式实现一组相同的创建步骤。 然后你就可以在创建过程中使用这些生成器 (例如按顺序调用多个构造步骤) 来生成不同类型的对象。

例如, 假设第一个建造者使用木头和玻璃制造房屋, 第二个建造者使用石头和钢铁, 而第三个建造者使用黄金和钻石。 在调用同一组步骤后, 第一个建造者会给你一栋普通房屋, 第二个会给你一座小城堡, 而第三个则会给你一座宫殿。 但是, 只有在调用构造步骤的客户端代码可以通过通用接口与建造者进行交互时, 这样的调用才能返回需要的房屋。

主管

你可以进一步将用于创建产品的一系列生成器步骤调用抽取成为单独的主管类。 主管类可定义创建步骤的执行顺序, 而生成器则提供这些步骤的实现。

严格来说, 你的程序中并不一定需要主管类。 客户端代码可直接以特定顺序调用创建步骤。 不过, 主管类中非常适合放入各种例行构造流程, 以便在程序中反复使用。

此外, 对于客户端代码来说, 主管类完全隐藏了产品构造细节。 客户端只需要将一个生成器与主管类关联, 然后使用主管类来构造产品, 就能从生成器处获得构造结果了。

原型模式

原型模式是一种创建型设计模式, 使你能够复制已有对象, 而又无需使代码依赖它们所属的类。

问题

如果你有一个对象, 并希望生成与其完全相同的一个复制品, 你该如何实现呢? 首先, 你必须新建一个属于相同类的对象。 然后, 你必须遍历原始对象的所有成员变量, 并将成员变量值复制到新对象中。

不错! 但有个小问题。 并非所有对象都能通过这种方式进行复制, 因为有些对象可能拥有私有成员变量, 它们在对象本身以外是不可见的。

直接复制还有另外一个问题。 因为你必须知道对象所属的类才能创建复制品, 所以代码必须依赖该类。 即使你可以接受额外的依赖性, 那还有另外一个问题: 有时你只知道对象所实现的接口, 而不知道其所属的具体类, 比如可向方法的某个参数传入实现了某个接口的任何对象。

 解决方案

原型模式将克隆过程委派给被克隆的实际对象。 模式为所有支持克隆的对象声明了一个通用接口, 该接口让你能够克隆对象, 同时又无需将代码和对象所属类耦合。 通常情况下, 这样的接口中仅包含一个 克隆方法。

所有的类对 克隆方法的实现都非常相似。 该方法会创建一个当前类的对象, 然后将原始对象所有的成员变量值复制到新建的类中。 你甚至可以复制私有成员变量, 因为绝大部分编程语言都允许对象访问其同类对象的私有成员变量。

支持克隆的对象即为原型。 当你的对象有几十个成员变量和几百种类型时, 对其进行克隆甚至可以代替子类的构造。

其运作方式如下: 创建一系列不同类型的对象并不同的方式对其进行配置。 如果所需对象与预先配置的对象相同, 那么你只需克隆原型即可, 无需新建一个对象。

单例模式

单例模式是一种创建型设计模式, 让你能够保证一个类只有一个实例, 并提供一个访问该实例的全局节点。

问题

单例模式同时解决了两个问题, 所以违反了单一职责原则

  1. 保证一个类只有一个实例。 为什么会有人想要控制一个类所拥有的实例数量? 最常见的原因是控制某些共享资源 (例如数据库或文件) 的访问权限。

    它的运作方式是这样的: 如果你创建了一个对象, 同时过一会儿后你决定再创建一个新对象, 此时你会获得之前已创建的对象, 而不是一个新对象。

    注意, 普通构造函数无法实现上述行为, 因为构造函数的设计决定了它必须总是返回一个新对象。

  2. 为该实例提供一个全局访问节点。 还记得你 (好吧, 其实是我自己) 用过的那些存储重要对象的全局变量吗? 它们在使用上十分方便, 但同时也非常不安全, 因为任何代码都有可能覆盖掉那些变量的内容, 从而引发程序崩溃。

    和全局变量一样, 单例模式也允许在程序的任何地方访问特定对象。 但是它可以保护该实例不被其他代码覆盖。

    还有一点: 你不会希望解决同一个问题的代码分散在程序各处的。 因此更好的方式是将其放在同一个类中, 特别是当其他代码已经依赖这个类时更应该如此。

如今, 单例模式已经变得非常流行, 以至于人们会将只解决上文描述中任意一个问题的东西称为单例

 解决方案

所有单例的实现都包含以下两个相同的步骤:

  • 将默认构造函数设为私有, 防止其他对象使用单例类的 new运算符。
  • 新建一个静态构建方法作为构造函数。 该函数会 “偷偷” 调用私有构造函数来创建对象, 并将其保存在一个静态成员变量中。 此后所有对于该函数的调用都将返回这一缓存对象。

如果你的代码能够访问单例类, 那它就能调用单例类的静态方法。 无论何时调用该方法, 它总是会返回相同的对象。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值