Favorite Dice,概率DP

本文详细解析了SPOJ上的FAVDICE题目,该题旨在求解一个N面骰子每面至少出现一次的期望掷骰次数。通过递推公式计算并精确到小数点后两位,提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Favorite Dice

 SPOJ - FAVDICE 

BuggyD loves to carry his favorite die around. Perhaps you wonder why it's his favorite? Well, his die is magical and can be transformed into an N-sided unbiased die with the push of a button. Now BuggyD wants to learn more about his die, so he raises a question:

What is the expected number of throws of his die while it has N sides so that each number is rolled at least once?

Input

The first line of the input contains an integer t, the number of test cases. t test cases follow.

Each test case consists of a single line containing a single integer N (1 <= N <= 1000) - the number of sides on BuggyD's die.

Output

For each test case, print one line containing the expected number of times BuggyD needs to throw his N-sided die so that each number appears at least once. The expected number must be accurate to 2 decimal digits.

Example

Input:
2
1
12

Output:
1.00
37.24

代码:

#include<bits/stdc++.h>
using namespace std;
int n,t;
double dp[1005];
int main()
{
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        dp[n] = 0;
        for(int i = n-1;i >= 0;--i)
            dp[i] = dp[i+1] + (double)n / (n - i);
        printf("%.2f\n",dp[0]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值