py-faster-rcnn配置CPU下运行demo.py

本文详细介绍了如何从零开始搭建Faster R-CNN环境,包括克隆项目、下载预训练模型、配置CUDA环境、编译安装Caffe等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.git数据

git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git

2.下载model文件,

bash ./data/scripts/fetch_faster_rcnn_models.sh

下载并解压:py-faster-rcnn/data/faster_rcnn_models/VGG16_faster_rcnn_final.caffemodel    py-faster-rcnn/data/faster_rcnn_models/ZF_faster_rcnn_final.caffemodel

3.进入py-faster-rcnn/lib,修改setup.py

#CUDA = locate_cuda()

...

           self.set_executable('compiler_so', CUDA['nvcc'])

...

   Extension('nms.gpu_nms',
       ['nms/nms_kernel.cu', 'nms/gpu_nms.pyx'],
       library_dirs=[CUDA['lib64']],
       libraries=['cudart'],
       language='c++',
       runtime_library_dirs=[CUDA['lib64']],
       # this syntax is specific to this build system
       # we're only going to use certain compiler args with nvcc and not with
       # gcc the implementation of this trick is in customize_compiler() below
       extra_compile_args={'gcc': ["-Wno-unused-function"],
                           'nvcc': ['-arch=sm_35',
                                    '--ptxas-options=-v',
                                    '-c',
                                    '--compiler-options',
                                    "'-fPIC'"]},
       include_dirs = [numpy_include, CUDA['include']]
   ),


运行 make


4.安装caffe,进入目录 py-faster-rcnn/caffe-fast-rcnn,首先 cp Makefile.config.example Makefile.config,并修改Makefile.config

CPU_ONLY := 1

BLAS_INCLUDE := /usr/include/atlas
BLAS_LIB := /usr/lib/atlas-base

WITH_PYTHON_LAYER := 1

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include  /usr/include/hdf5/serial/

修改Makefile:

LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial

再运行 make -j8 && make pycaffe

5.回去目录 py-faster-rcnn 运行python tools/demo.py --cpu

如果:ImportError: No module named easydict,运行pip install easydict

如果:ImportError: No module named gpu_nms,修改lib/fast_rcnn/nms_wrapper.py,

#from nms.gpu_nms import gpu_nms
from nms.cpu_nms import cpu_nms
def nms(dets, thresh, force_cpu=True):

至此,运行python tools/demo.py --cpu 成功。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值