python字符串操作

python有各种各样的string操作函数。在历史上string类在python中经历了一段轮回的历史。在最开始的时候,python有一个专门的string的module,要使用string的方法要先import,但后来由于众多的python使用者的建议,从python2.0开始, string方法改为用S.method()的形式调用,只要S是一个字符串对象就可以这样使用,而不用import。同时为了保持向后兼容,现在的 python中仍然保留了一个string的module,其中定义的方法与S.method()是相同的,这些方法都最后都指向了用S.method ()调用的函数。要注意,S.method()能调用的方法比string的module中的多,比如isdigit()、istitle()等就只能用 S.method()的方式调用。 

对一个字符串对象,首先想到的操作可能就是计算它有多少个字符组成,很容易想到用S.len(),但这是错的,应该是len(S)。因为len()是内置函数,包括在__builtin__模块中。python不把len()包含在string类型中,乍看起来好像有点不可理解,其实一切有其合理的逻辑在里头。len()不仅可以计算字符串中的字符数,还可以计算list的成员数,tuple的成员数等等,因此单单把len()算在string里是不合适,因此一是可以把len()作为通用函数,用重载实现对不同类型的操作,还有就是可以在每种有len()运算的类型中都要包含一个len()函数。 python选择的是第一种解决办法。类似的还有str(arg)函数,它把arg用string类型表示出来。 

字符串中字符大小写的变换: 

S.lower() #小写 
S.upper() #大写 
S.swapcase() #大小写互换 
S.capitalize() #首字母大写 
String.capwords(S) 
#这是模块中的方法。它把S用split()函数分开,然后用capitalize()把首字母变成大写,最后用join()合并到一起 
S.title() #只有首字母大写,其余为小写,模块中没有这个方法 


字符串在输出时的对齐: 

S.ljust(width,[fillchar]) 
#输出width个字符,S左对齐,不足部分用fillchar填充,默认的为空格。 
S.rjust(width,[fillchar]) #右对齐 
S.center(width, [fillchar]) #中间对齐 
S.zfill(width) #把S变成width长,并在右对齐,不足部分用0补足 

字符串中的搜索和替换: 

S.find(substr, [start, [end]]) 
#返回S中出现substr的第一个字母的标号,如果S中没有substr则返回-1。start和end作用就相当于在S[start:end]中搜索 
S.index(substr, [start, [end]]) 
#与find()相同,只是在S中没有substr时,会返回一个运行时错误 
S.rfind(substr, [start, [end]]) 
#返回S中最后出现的substr的第一个字母的标号,如果S中没有substr则返回-1,也就是说从右边算起的第一次出现的substr的首字母标号 
S.rindex(substr, [start, [end]]) 
S.count(substr, [start, [end]]) #计算substr在S中出现的次数 
S.replace(oldstr, newstr, [count]) 
#把S中的oldstar替换为newstr,count为替换次数。这是替换的通用形式,还有一些函数进行特殊字符的替换 
S.strip([chars]) 
#把S中前后chars中有的字符全部去掉,可以理解为把S前后chars替换为None 
S.lstrip([chars]) 
S.rstrip([chars]) 
S.expandtabs([tabsize]) 
#把S中的tab字符替换没空格,每个tab替换为tabsize个空格,默认是8个 
字符串的分割和组合: 

S.split([sep, [maxsplit]]) 
#以sep为分隔符,把S分成一个list。maxsplit表示分割的次数。默认的分割符为空白字符 
S.rsplit([sep, [maxsplit]]) 
S.splitlines([keepends]) 
#把S按照行分割符分为一个list,keepends是一个bool值,如果为真每行后而会保留行分割符。 
S.join(seq) #把seq代表的序列──字符串序列,用S连接起来 

字符串的mapping,这一功能包含两个函数: 

String.maketrans(from, to) 
#返回一个256个字符组成的翻译表,其中from中的字符被一一对应地转换成to,所以from和to必须是等长的。 
S.translate(table[,deletechars]) 
# 使用上面的函数产后的翻译表,把S进行翻译,并把deletechars中有的字符删掉。需要注意的是,如果S为unicode字符串,那么就不支持 deletechars参数,可以使用把某个字符翻译为None的方式实现相同的功能。此外还可以使用codecs模块的功能来创建更加功能强大的翻译表。 
字符串还有一对编码和解码的函数: 

S.encode([encoding,[errors]]) 
# 其中encoding可以有多种值,比如gb2312 gbk gb18030 bz2 zlib big5 bzse64等都支持。errors默认值为"strict",意思是UnicodeError。可能的值还有'ignore', 'replace', 'xmlcharrefreplace', 'backslashreplace' 和所有的通过codecs.register_error注册的值。这一部分内容涉及codecs模块,不是特明白 

S.decode([encoding,[errors]]) 
字符串的测试函数,这一类函数在string模块中没有,这些函数返回的都是bool值: 

S.startwith(prefix[,start[,end]]) 
#是否以prefix开头 
S.endwith(suffix[,start[,end]]) 
#以suffix结尾 
S.isalnum() 
#是否全是字母和数字,并至少有一个字符 
S.isalpha() #是否全是字母,并至少有一个字符 
S.isdigit() #是否全是数字,并至少有一个字符 
S.isspace() #是否全是空白字符,并至少有一个字符 
S.islower() #S中的字母是否全是小写 
S.isupper() #S中的字母是否便是大写 
S.istitle() #S是否是首字母大写的 

字符串类型转换函数,这几个函数只在string模块中有: 

string.atoi(s[,base]) 
#base默认为10,如果为0,那么s就可以是012或0x23这种形式的字符串,如果是16那么s就只能是0x23或0X12这种形式的字符串 
string.atol(s[,base]) #转成long 
string.atof(s[,base]) #转成float 

这里再强调一次,字符串对象是不可改变的,也就是说在python创建一个字符串后,你不能把这个字符中的某一部分改变。任何上面的函数改变了字符串后,都会返回一个新的字符串,原字串并没有变。其实这也是有变通的办法的,可以用S=list(S)这个函数把S变为由单个字符为成员的list,这样的话就可以使用S[3]='a'的方式改变值,然后再使用S=" ".join(S)还原成字符串
### 光流法C++源代码解析与应用 #### 光流法原理 光流法是一种在计算机视觉领域中用于追踪视频序列中运动物体的方法。它基于亮度不变性假设,即场景中的点在时间上保持相同的灰度值,从而通过分析连续帧之间的像素变化来估计运动方向和速度。在数学上,光流场可以表示为像素位置和时间的一阶导数,即Ex、Ey(空间梯度)和Et(时间梯度),它们共同构成光流方程的基础。 #### C++实现细节 在给定的C++源代码片段中,`calculate`函数负责计算光流场。该函数接收一个图像缓冲区`buf`作为输入,并初始化了几个关键变量:`Ex`、`Ey`和`Et`分别代表沿x轴、y轴和时间轴的像素强度变化;`gray1`和`gray2`用于存储当前帧和前一帧的平均灰度值;`u`则表示计算出的光流矢量大小。 #### 图像处理流程 1. **初始化和预处理**:`memset`函数被用来清零`opticalflow`数组,它将保存计算出的光流数据。同时,`output`数组被填充为白色,这通常用于可视化结果。 2. **灰度计算**:对每一像素点进行处理,计算其灰度值。这里采用的是RGB通道平均值的计算方法,将每个像素的R、G、B值相加后除以3,得到一个近似灰度值。此步骤确保了计算过程的鲁棒性和效率。 3. **光流向量计算**:通过比较当前帧和前一帧的灰度值,计算出每个像素点的Ex、Ey和Et值。这里值得注意的是,光流向量的大小`u`是通过`Et`除以`sqrt(Ex^2 + Ey^2)`得到的,再乘以10进行量化处理,以减少计算复杂度。 4. **结果存储与阈值处理**:计算出的光流值被存储在`opticalflow`数组中。如果`u`的绝对值超过10,则认为该点存在显著运动,因此在`output`数组中将对应位置标记为黑色,形成运动区域的可视化效果。 5. **状态更新**:通过`memcpy`函数将当前帧复制到`prevframe`中,为下一次迭代做准备。 #### 扩展应用:Lukas-Kanade算法 除了上述基础的光流计算外,代码还提到了Lukas-Kanade算法的应用。这是一种更高级的光流计算方法,能够提供更精确的运动估计。在`ImgOpticalFlow`函数中,通过调用`cvCalcOpticalFlowLK`函数实现了这一算法,该函数接受前一帧和当前帧的灰度图,以及窗口大小等参数,返回像素级别的光流场信息。 在实际应用中,光流法常用于目标跟踪、运动检测、视频压缩等领域。通过深入理解和优化光流算法,可以进一步提升视频分析的准确性和实时性能。 光流法及其C++实现是计算机视觉领域的一个重要组成部分,通过对连续帧间像素变化的精细分析,能够有效捕捉和理解动态场景中的运动信息
微信小程序作为腾讯推出的一种轻型应用形式,因其便捷性与高效性,已广泛应用于日常生活中。以下为该平台的主要特性及配套资源说明: 特性方面: 操作便捷,即开即用:用户通过微信内搜索或扫描二维码即可直接使用,无需额外下载安装,减少了对手机存储空间的占用,也简化了使用流程。 多端兼容,统一开发:该平台支持在多种操作系统与设备上运行,开发者无需针对不同平台进行重复适配,可在一个统一的环境中完成开发工作。 功能丰富,接口完善:平台提供了多样化的API接口,便于开发者实现如支付功能、用户身份验证及消息通知等多样化需求。 社交整合,传播高效:小程序深度嵌入微信生态,能有效利用社交关系链,促进用户之间的互动与传播。 开发成本低,周期短:相比传统应用程序,小程序的开发投入更少,开发周期更短,有助于企业快速实现产品上线。 资源内容: “微信小程序-项目源码-原生开发框架-含效果截图示例”这一资料包,提供了完整的项目源码,并基于原生开发方式构建,确保了代码的稳定性与可维护性。内容涵盖项目结构、页面设计、功能模块等关键部分,配有详细说明与注释,便于使用者迅速理解并掌握开发方法。此外,还附有多个实际运行效果的截图,帮助用户直观了解功能实现情况,评估其在实际应用中的表现与价值。该资源适用于前端开发人员、技术爱好者及希望拓展业务的机构,具有较高的参考与使用价值。欢迎查阅,助力小程序开发实践。资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值