Train:
./darknet detector train [dataFile] [cfgFile] [weights] -gpus [number]
MAP:
- To check accuracy mAP@IoU=50:
darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights - To check accuracy mAP@IoU=75:
darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights -iou_thresh 0.75
Test image:
./darknet detector test ./cfg/coco.data ./cfg/yolov4.cfg ./yolov4.weights
模型特性:
- detector与数据相关性,对于数据库的要求高
for each object which you want to detect - there must be at least 1 similar object in the Training dataset with abo
YOLOv4训练与优化指南:Darknet常用命令解析

本文介绍了YOLOv4在Darknet框架下的训练过程,包括基本命令行参数如`detector train`,以及如何检查精度(mAP@IoU=50,75)。此外,讨论了模型对训练数据集的要求,强调每个目标类别至少有1个相似对象,并建议训练数据集包含不同尺度、旋转、光照和背景的对象。还提到了小目标检测的参数调整,如设置`max_batches`、`steps`和`subdivisions`。最后,提供了模型训练参数优化的链接。"
55189480,5762664,keepalived与LVS构建高可用负载均衡集群,"['负载均衡', '高可用', 'keepalived', 'LVS', '集群']
最低0.47元/天 解锁文章
559

被折叠的 条评论
为什么被折叠?



