本文摘选自:
https://blog.youkuaiyun.com/google19890102/article/details/26149927
https://blog.youkuaiyun.com/taoyanqi8932/article/details/53727841
https://blog.youkuaiyun.com/gamer_gyt/article/details/48949227
https://www.cnblogs.com/eczhou/p/7860435.html
一、聚类算法的简介
聚类算法是一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。聚类算法与分类算法最大的区别是:聚类算法是无监督的学习算法,而分类算法属于监督的学习算法。
在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。
二、K-Means算法的概述
基本K-Means算法的思想很简单,事先确定常数K,常数K意味着最终的聚类类别数,首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,接着,重新计算每个类的质心(即为类中心),重复这样的过程,直到质心不再改变,最终就确定了每个样本所属的类别以及每个类的质心。由于每次都要计算所有的样本与每一个质心之间的相似度,故在大规模的数据集上,K-Means算法的收敛速度比较慢。
三、K-Means算法的流程
- 初始化常数K,随机选取初始点为质心
- 重复计算以下过程,直到质心不再改变
- 计算样本与每个质心之间的相似度,将样本归类到最相似的类中
- 重新计算质心
- 输出最终的质心以及每个类
优点:易于实现
缺点:可能收敛于局部最小值,在大规模数据收敛慢
K-Means算法的缺陷
k均值算法非常简单且使用广泛,但是其有主要的两个缺陷:
1. K值需要预先给定,属于预先知识,很多情况下K值的估计是非常困难的,对于像计算全部微信用户的交往圈这样的场景就完全的没办法用K-Means进行。对于可以确定K值不会太大但不明确精确的K值的场景,可以进行迭代运算,然后找出Cost Function最小时所对应的K值,这个值往往能较好的描述有多少个簇类。
2. K-Means算法对初始选取的聚类中心点是敏感的,不同的随机种子点得到的聚类结果完全不同
3. K均值算法并不适合所有的数据类型。它不能处理非球形簇、不同尺寸和不同密度的簇。
4. 对离群点的数据进行聚类时,K均值也有问题,这种情况下,离群点检测和删除有很大的帮助。
由于传统的K-Means算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的K-Means算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选到一个类上,一定程度上克服了算法陷入局部最优状态。
K-Means优化算法
为了克服K-Means算法收敛于局部最小值的问题,提出了一种二分K-均值(bisecting K-means)
二分K-Means(Bisecting KMeans)算法的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二。之后选择能最大限度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇。以此进行下去,直到簇的数目等于用户给定的数目k为止。以上隐含的一个原则就是:因为聚类的误差平方和能够衡量聚类性能,该值越小表示数据点越接近于他们的质心,聚类效果就越好。所以我们就需要对误差平方和最大的簇进行再一次划分,因为误差平方和越大,表示该簇聚类效果越不好,越有可能是多个簇被当成了一个簇,所以我们首先需要对这个簇进行划分。
比如要分成5个组,第一次分裂产生2个组,然后从这2个组中选一个目标函数产生的误差比较大的,分裂这个组产生2个,这样加上开始那1个就有3个组了,然后再从这3个组里选一个分裂,产生4个组,重复此过程,产生5个组。这算是一中基本求精的思想。二分k均值不太受初始化的困扰,因为它执行了多次二分试验并选取具有最小误差的试验结果,还因为每步只有两个质心。