1013. Battle Over Cities (25)

本文针对1013.BattleOverCities问题,介绍了两种解决方法:深度优先搜索(DFS)和并查集算法。该问题关注城市间高速公路连接,在某城市被占领后,需修复多少道路以保持其余城市连通。通过实例演示了算法的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1013. Battle Over Cities (25)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

It is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.

For example, if we have 3 cities and 2 highways connecting city1-city2 and city1-city3. Then if city1 is occupied by the enemy, we must have 1 highway repaired, that is the highway city2-city3.

Input

Each input file contains one test case. Each case starts with a line containing 3 numbers N (<1000), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then M lines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.

Output

For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.

Sample Input
3 2 3
1 2
1 3
1 2 3
Sample Output
1
0

0

为什么我每次都会把简单的问题搞复杂,这道题的模型是求有几个连通的子集n,则需要修n-1条路。

看了几位大佬的文章,好多是用并查集算法做的,http://blog.youkuaiyun.com/dm_vincent/article/details/7655764这篇从并

查集出发,谈论了好多,值得收藏。http://blog.youkuaiyun.com/liujian20150808/article/details/50848646这篇很生动啊

我本能想到的是用DFS算法,还可以记录路径。

方法一:DFS

#include<stdio.h>  
#include<string.h>  
  
#define max 1001  
int edge[max][max];  
int visited[max];  
int query[max];  
int N; // the total number of cities  
int M; // the number of remaining highways  
int K; // the number of cities to be checked  
  
void dfs(int t)  
{  
    visited[t] = 1;  
    int i;  
    for(i=1; i<=N; i++)  
    {  
        if(!visited[i] && edge[i][t] == 1)  
            dfs(i);  
    }  
}  
  
  
  
int main()  
{     
    int i,j;  
    int a,b;      
    scanf("%d%d%d",&N,&M,&K);  
    for(i=0; i<M; i++)  
    {  
        scanf("%d%d",&a,&b);  
        edge[a][b] = 1;  
        edge[b][a] = 1;  
    }  
    int temp;  
    int num;  
    for(i=0; i<K; i++)  
    {  
        num = 0;  
        scanf("%d",&temp);  
        memset(visited,0,sizeof(visited)); //数组的整体初始化,memset在<string.h>,<iostream>,<mem.h>中都有。

        visited[temp] = 1;  
        for(j=1; j<=N; j++)  
        {  
            if(visited[j] == 0)  
            {                 
                dfs(j);  
                num ++;  
            }  
        }  
        printf("%d\n",num-1);  
    }  
  
}  
方法二:并查集

#include <cstdio>  
int Tree[1000];  
int findRoot(int x){  
    if (Tree[x] == -1) return x;  
    else{  
        int tmp = findRoot(Tree[x]);  
        Tree[x] = tmp;  
        return tmp;  
    }  
}  
struct w{  
    int x;  
    int y;  
}way[500000];  
int main(){  
    int n, m, k;  
    scanf("%d%d%d", &n, &m, &k);  
    for (int i = 0; i < m; i++){  
        scanf("%d%d", &way[i].x, &way[i].y);  
    }  
    while (k--){  
        for (int i = 1; i <= n; i++)  
            Tree[i] = -1;  
        int c;  
        scanf("%d", &c);  
        for (int i = 0; i < m; i++){  
            if (way[i].x != c && way[i].y != c){  
                int rx = findRoot(way[i].x);  
                int ry = findRoot(way[i].y);  
                if (rx != ry){  
                    Tree[rx] = ry;  
                }  
            }  
        }  
        int group = 0;  
        for (int i = 1; i <= n; i++){  
            if (Tree[i] == -1)  
                group++;  
        }  
        printf("%d\n", group-2);  
    }  
    return 0;  
}   

注意并查集的表示在数组Tree中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值