>>> import numpy as np
>>> import pandas as pd
Backend TkAgg is interactive backend. Turning interactive mode on.
>>> ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
>>> ts = ts.cumsum()
>>> ts.plot()
<matplotlib.axes._subplots.AxesSubplot object at 0x000000000EC74BE0>
结果:
有意思的是以上代码在 py 文件中不显示,除非添加 plt.show()
import numpy as np
import matplotlib.pyplot as plt
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
ts.plot()
plt.show()
在数据桢中,可以很方便的绘制带标签列:
注:loc(设置图例显示的位置)
‘best’ : 0, (only implemented for axes legends)(自适应方式)
‘upper right’ : 1,
‘upper left’ : 2,
‘lower left’ : 3,
‘lower right’ : 4,
‘right’ : 5,
‘center left’ : 6,
‘center right’ : 7,
‘lower center’ : 8,
‘upper center’ : 9,
‘center’ : 10,
import numpy as np
import matplotlib.pyplot as plt
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
# ts = ts.cumsum()
# ts.plot()
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
columns = ['A', 'B', 'C', 'D'])
df = df.cumsum()
plt.figure()
df.plot()
plt.legend(loc='best')
plt.show()
结果显示
df3 = pd.DataFrame(np.random.randn(1000, 2), columns=['B', 'C']).cumsum()
print(df3)
df3['A'] = pd.Series(list(range(len(df))))
df3.plot(x='A', y='B')
plt.show()
显示结果:
初识pandas (1)
初识 pandas (2)
初识 pandas (3):绘图
参考资料:http://pandas.pydata.org/pandasdocs/stable/visualization.html#visualization