遗传算法总结

本文深入探讨了遗传算法的基本原理,包括种群初始化、选择、交叉和变异等操作。通过实例展示了遗传算法如何解决优化问题,并讨论了其在实际问题中的应用与优势,以及可能遇到的挑战和解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遗传算法基本思想

1、首先实现从性状到基因的映射,即编码工作,然后从代表问题可能潜在解集的一个种群开始进行进化求解;
2、初代种群(编码集合)产生后,按照优胜劣汰的原则,根据个体适应度大小挑选(选择)个;
3、进行复制、交叉、变异,产生出代表新的解集的群体,再对其进行挑选以及一系列遗传操作,如此往复,逐代演化产生出越来越好的近似解。

遗传算法与经典算法的区别

1、两者的区别
遗传算法以决策变量的编码作为运算对象。传统的优化算法往往直接利用决策变量的实际值本身进行优化计算,但遗传算法不是直接以决策变量的值,而是以决策变量的某种形式的编码为运算对象,从而可以很方便地引入和应用遗传操作算子。(编码)
遗传算法直接以目标函数值作为搜索信息。传统的优化算法往往不只需要目标函数值,还需要目标函数的导数等其它信息。这样对许多目标函数无法求导或很难求导的函数,遗传算法就比较方便。(对函数要求低)
遗传算法同时进行解空间的多点搜索。传统的优化算法往往从解空间的一个初始点开始搜索,这样容易陷入局部极值点。遗传算法进行群体搜索,而且在搜索的过程中引入遗传运算,使群体又可以不断进化。这也是遗传算法所特有的一种隐含并行性。(群体优化,并行计算,避免陷入局部最优)
遗传算法使用概率搜索技术 。遗传算法属于一种自适应概率搜索技术,其选择、交叉、变异等运算都是以一种概率

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。   遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值