Java类加载机制

Java类加载机制解析

   Java类加载机制
所谓类加载机制是指 Java 虚拟机如何加载class文件?

类加载机制
虚拟机将类的数据从Class文件加载到内存,并对数据进行校验,转换解析,和初始化最终形成Java虚拟机可以使用的Java类型


类从被加载到虚拟机内存开始,到卸载出内存为止,整个生命周期包括:

加载(Loading)
取得类的二进制流, jar,或者网络,java.lang.对象

   验证
   类 是不是正常的文件格式,oxCAFEBASE

   版本号是否合理

元数据验证
         是否有父类

        是否final类

       抽象方式是否实现了所有的抽象方法

字节码验证
运行检查

准备 
   分配内存

解析
初始化
JVM里的有几种classloader,为什么会有多种?



BootStrapClassLoader  JAVA_HOME/LIb

Extension  ClassLoader JAVA_HOME/lib/ext

Application  ClassLoader   CLASSPTAH 指定的路径

什么是双亲委派机制?介绍一些运作过程,双亲委派模型的好处?


工作机制

1.加载当前类时,判断当前类是否加载过,如果加载过,那么直接返回原来加载的类

2.当前ClassLoader 没有找到加载的类,委托父类加载器取加载,父类加载器同样先从缓存中去加载,然后委托父类去加载

双亲委派原则有什么好处?
 
主要是为了安全,因为 JVM 中区分不同类,不仅仅是根据类名,相同的 class 文件被不同的 ClassLoader 加载就是不同的两个类,如果相互转型的话会抛java.lang.ClassCaseException.

什么情况下我们需要破坏双亲委派模型?
 

Tomcat 为什么要这样设计 类加载机制?
1. 一个web容器可能需要部署两个应用程序,不同的应用程序可能会依赖同一个第三方类库的不同版本,不能要求同一个类库在同一个服务器只有一份,因此要保证每个应用程序的类库都是独立的,保证相互隔离。 

所以需要 webApp ClassLoader

2. 部署在同一个web容器中相同的类库相同的版本可以共享。否则,如果服务器有10个应用程序,那么要有10份相同的类库加载进虚拟机,这是扯淡的。 

需要share ClassLoader 类加载器
3. web容器也有自己依赖的类库,不能于应用程序的类库混淆。基于安全考虑,应该让容器的类库和程序的类库隔离开来。 

所以需要 catalina ClassLoader 类加载机制 Tomcat容器私有的类加载器,加载路径中的class对于Webapp不可见;


4. web容器要支持jsp的修改,我们知道,jsp 文件最终也是要编译成class文件才能在虚拟机中运行,但程序运行后修改jsp已经是司空见惯的事情,否则要你何用? 所以,web容器需要支持 jsp 修改后不用重启。

tomcat 是支持JSP 热部署的 ,jsp 文件其实也就是class文件,那么如果修改了,但类名还是一样,类加载器会直接取方法区中已经存在的,修改后的jsp是不会重新加载的。那么怎么办呢?我们可以直接卸载掉这jsp文件的类加载器,所以你应该想到了,每个jsp文件对应一个唯一的类加载器,当一个jsp文件修改了,就直接卸载这个jsp类加载器。重新创建类加载器,重新加载jsp文件, 所以会需要一个JSP classLoader 

commonLoader:Tomcat最基本的类加载器,加载路径中的class可以被Tomcat容器本身以及各个Webapp访问;
catalinaLoader:Tomcat容器私有的类加载器,加载路径中的class对于Webapp不可见;
sharedLoader:各个Webapp共享的类加载器,加载路径中的class对于所有Webapp可见,但是对于Tomcat容器不可见;
WebappClassLoader:各个Webapp私有的类加载器,加载路径中的class只对当前Webapp可见;

内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值