idea编写java sparksql ,部署模式为standalone,

1,Hadoop2.9.0

2,spark2.2.1_2.11

3,java代码:
 

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.SparkSession;

/**
 * 开启spark程序
 *
 */
public class App 
{
    public static void main( String[] args )
    {
        //standalone模式不支持读取本地文件,只支持hdfs文件,除非每个worker上均有一样的本地文件
        String testFilePath = "hdfs://hdmaster:8020/user/root/sparktest.txt";
        SparkSession spark = SparkSession
                .builder()
                .appName("test spark connection")
                .master("spark://hdmaster:7077")//local[*]  spark://hdmaster:7077
                .config("spark.jars","target/asym-xdr-combine-1.0-SNAPSHOT.jar")//这种通过IDE提交都是standalone方式,告诉程序主函数的位置
                .getOrCreate();
        JavaRDD<People> rdd = spark
                .read()
                .textFile(testFilePath)
                .javaRDD()
                .map(new Function<String, People>() {//map算子需要在集群中分配,所以其中的参数变量需要序列化
                    @Override
                    public People call(String s) throws Exception {
                        String[] parts = s.split("\\|");//注意竖线的正则匹配
                        return new People(parts[0], parts[1],parts[2]);
                    }
                });
        spark.createDataFrame(rdd, People.class).createOrReplaceTempView("people");
        String sql="select name from people";
        spark.sql(sql).show();
    }
}

4,注意事项

io.netty包冲突:查看maven中心仓库中spark-core依赖版本,替换版本

其他的包冲突:例如jkson.javax.servlet等需要在其他依赖中  pom中去除

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>www.xx.net.cn</groupId>
    <artifactId>asym-xdr-combine</artifactId>
    <version>1.0-SNAPSHOT</version>

    <name>asym-xdr-combine</name>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <maven.compiler.source>1.7</maven.compiler.source>
        <maven.compiler.target>1.7</maven.compiler.target>
        <junit.version>4.12</junit.version>


        <hadoop.version>2.9.0</hadoop.version>
        <flume.version>1.8.0</flume.version>
        <scala.version>2.11</scala.version>
        <kafka.version>1.1.1</kafka.version>
        <spark.version>2.2.0</spark.version>
        <quartz.version>2.3.0</quartz.version>
        <emial.verson>1.5</emial.verson>
        <hive.verson>2.3.4</hive.verson>
        <mysql.jdbc.verson>5.1.46</mysql.jdbc.verson>
        <netty.verson>4.0.43.Final</netty.verson>


        <easymock.version>3.6</easymock.version>
    </properties>

    <dependencies>

        <!--hadoop base-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
            <exclusions>
                <exclusion>
                    <groupId>javax.servlet</groupId>
                    <artifactId>*</artifactId>
                </exclusion>
            </exclusions>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
            <exclusions>
                <exclusion>
                    <groupId>javax.servlet</groupId>
                    <artifactId>*</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>com.fasterxml.jackson.core</groupId>
                    <artifactId>*</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>io.netty</groupId>
                    <artifactId>*</artifactId>
                </exclusion>
            </exclusions>
        </dependency>

        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-jdbc</artifactId>
            <version>${hive.verson}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flume</groupId>
            <artifactId>flume-ng-core</artifactId>
            <version>${flume.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_${scala.version}</artifactId>
            <version>${kafka.version}</version>
            <exclusions>
                <exclusion>
                    <groupId>com.fasterxml.jackson.core</groupId>
                    <artifactId>*</artifactId>
                </exclusion>
            </exclusions>

        </dependency>

        <!--spark -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>


        <!--netty-->
        <dependency>
            <groupId>io.netty</groupId>
            <artifactId>netty-all</artifactId>
            <version>${netty.verson}</version>
        </dependency>


        <!-- apache mail tools -->
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-email</artifactId>
            <version>${emial.verson}</version>
        </dependency>


        <!--定时任务-->

        <dependency>
            <groupId>org.quartz-scheduler</groupId>
            <artifactId>quartz</artifactId>
            <version>${quartz.version}</version>
        </dependency>

        <!--test -->
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>${junit.version}</version>
            <scope>test</scope>
        </dependency>

        <dependency>
            <groupId>org.easymock</groupId>
            <artifactId>easymock</artifactId>
            <version>${easymock.version}</version>
            <scope>test</scope>
        </dependency>


        <!--jdbc mysql-->

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>${mysql.jdbc.verson}</version>
        </dependency>
    </dependencies>

    </project>

5,部署模式说明(转载):

单机:
local[n] 单机伪分布式模式,n个线程分别充当driver和Executors。由于driver和Executors处于同一个jvm,算子可以访问外部的变量。很多新手的坏习惯就是从这里养成的

集群:
standalone spark worker组成集群,Spark内置的集群搭建模式。适合于不太依赖Hadoop的运算环境,或者存储集群和计算集群分离的场景。
yarn 运行与Hadoop Yarn集群之上。作业调度、资源调度由Yarn分配。Yarn在这方面做得比Spark standalone集群好。适用于存储计算合一,或者需要依赖MR、Hive等作业的场景

部署模式:
client driver运行于执行spark-submit脚本的机器上。这机器不一定是集群的节点,你可以在Windows上运行driver,Linux集群运行Executors。
cluster 作业提交后,driver运行于集群上的某一个节点上,集群视其为一个Executor。相当于后台程序。

standalone 和 yarn(还有mesos,这个不了解)都支持client/cluster两种模式。前者由--master参数控制,后者由deploy-mode参数控制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值