Problem57

原题:

It is possible to show that the square root of two can be expressed as an infinite continued fraction.
2(开方) = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...

By expanding this for the first four iterations, we get:

1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...

The next three expansions are 99/70, 239/169, and 577/408,
but the eighth expansion, 1393/985,
is the first example where the number of digits
in the numerator exceeds the number of digits in the denominator.

In the first one-thousand expansions,
how many fractions contain a numerator with more digits than denominator?

 

分析:

根据题意可看出2的开平方的近似序列1为:
 3/2    7/5     17/12    41/29     99/70     239/169     577/408    1393/985 
 可以推导出:
  序列1的递推公式为f(N)=f(N-1)(a-分子,b-分母)=(a+2b)/(a+b)

 

代码如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值