题意:给出一排数列,然后要求出一个d,使得将数列中的数变成d的整数倍之后与原来的相差之和要小于k,求d的最大值。
思路:相当于将数列中的数变成整数倍之后的数要小于sum = k + sigma(a[i])。因为是整数倍,所以不考虑剩余,直接将d枚举成sum的因子,然后看是否符合。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1000 + 10;
typedef long long ll;
typedef pair<ll,ll> P;
int n;
ll m;
int a[maxn];
ll calc(ll d)
{
ll ret = 0;
for(int i = 1;i <= n; i ++)
{
ret += 1LL * (a[i] + d - 1)/d * d;
}
return ret;
}
int main()
{
while( ~ scanf("%d%I64d",&n,&m))
{
ll sum = m;
for(int i = 1; i <= n; i ++)scanf("%d",&a[i]),sum += a[i];
ll ans = 0;
for(ll i = 1; i * i <= sum; i ++)
{
ll temp = calc(i);
if(temp <= sum)ans = max(ans,i);
temp = calc(sum / i);
if(temp <= sum)ans = max(ans,sum / i);
}
printf("%I64d\n",ans);
}
return 0;
}