Hadoop简介--MapReduce

本文深入浅出地介绍了Hadoop及其核心组件MapReduce的工作原理和技术细节,通过实例帮助读者理解分布式计算的基本概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hadoop简介

Hadoop就是一个实现了Google云计算系统的开源系统,包括并行计算模型Map/Reduce,分布式文件系统HDFS,以及分布式数据库Hbase,同时Hadoop的相关项目也很丰富,包括ZooKeeperPigChukwaHiveHbaseMahoutflume.

这里详细分解这里面的概念让大家通过这篇文章了解到底是什么hadoop



1.
什么是Map/Reduce,看下面的各种解释:

(1)MapReducehadoop的核心组件之一,hadoop要分布式包括两部分,一是分布式文件系统hdfs,一部是分布式计算框,就是mapreduce,缺一不可,也就是说,可以通过mapreduce很容易在hadoop平台上进行分布式的计算编程。

(2)Mapreduce
是一种编程模型,是一种编程方法,抽象理论。

(3)
下面是一个关于一个程序员是如何个妻子讲解什么是MapReduce?文章很长请耐心的看。

我问妻子:你真的想要弄懂什么是MapReduce她很坚定的回答说是的因此我问道:

我: 你是如何准备洋葱辣椒酱的?(以下并非准确食谱,请勿在家尝试)

妻子: 我会取一个洋葱,把它切碎,然后拌入盐和水,最后放进混合研磨机里研磨。这样就能得到洋葱辣椒酱了。


妻子: 但这和MapReduce有什么关系?

我: 你等一下。让我来编一个完整的情节,这样你肯定可以在15分钟内弄懂MapReduce.

妻子: 好吧。

我:现在,假设你想用薄荷、洋葱、番茄、辣椒、大蒜弄一瓶混合辣椒酱。你会怎么做呢?

妻子: 我会取薄荷叶一撮,洋葱一个,番茄一个,辣椒一根,大蒜一根,切碎后加入适量的盐和水,再放入混合研磨机里研磨,这样你就可以得到一瓶混合辣椒酱了。

我: 没错,让我们把MapReduce的概念应用到食谱上。MapReduce其实是两种操作,我来给你详细讲解下。
Map(映射): 把洋葱、番茄、辣椒和大蒜切碎,是各自作用在这些物体上的一个Map操作。所以你给Map一个洋葱,Map就会把洋葱切碎。同样的,你把辣椒,大蒜和番茄一一地拿给Map,你也会得到各种碎块。所以,当你在切像洋葱这样的蔬菜时,你执行就是一个Map操作。 Map操作适用于每一种蔬菜,它会相应地生产出一种或多种碎块,在我们的例子中生产的是蔬菜块。在Map操作中可能会出现有个洋葱坏掉了的情况,你只要把坏洋葱丢了就行了。所以,如果出现坏洋葱了,Map操作就会过滤掉坏洋葱而不会生产出任何的坏洋葱块。


Reduce(化简):在这一阶段,你将各种蔬菜碎都放入研磨机里进行研磨,你就可以得到一瓶辣椒酱了。这意味要制成一瓶辣椒酱,你得研磨所有的原料。因此,研磨机通常将map操作的蔬菜碎聚集在了一起。

妻子: 所以,这就是MapReduce?

我: 你可以说是,也可以说不是。其实这只是MapReduce的一部分,MapReduce的强大在于分布式计算。

妻子: 分布式计算?那是什么?请给我解释下吧。

我: 没问题。

我: 假设你参加了一个辣椒酱比赛并且你的食谱赢得了最佳辣椒酱奖。得奖之后,辣椒酱食谱大受欢迎,于是你想要开始出售自制品牌的辣椒酱。假设你每天需要生产10000瓶辣椒酱,你会怎么办呢?

妻子: 我会找一个能为我大量提供原料的供应商。

我:是的..就是那样的。那你能否独自完成制作呢?也就是说,独自将原料都切碎?仅仅一部研磨机又是否能满足需要?而且现在,我们还需要供应不同种类的辣椒酱,像洋葱辣椒酱、青椒辣椒酱、番茄辣椒酱等等。

妻子: 当然不能了,我会雇佣更多的工人来切蔬菜。我还需要更多的研磨机,这样我就可以更快地生产辣椒酱了。
我:没错,所以现在你就不得不分配工作了,你将需要几个人一起切蔬菜。每个人都要处理满满一袋的蔬菜,而每一个人都相当于在执行一个简单的Map操作。每一个人都将不断的从袋子里拿出蔬菜来,并且每次只对一种蔬菜进行处理,也就是将它们切碎,直到袋子空了为止。
这样,当所有的工人都切完以后,工作台(每个人工作的地方)上就有了洋葱块、番茄块、和蒜蓉等等。

妻子:但是我怎么会制造出不同种类的番茄酱呢?

我:现在你会看到MapReduce遗漏的阶段搅拌阶段。MapReduce将所有输出的蔬菜碎都搅拌在了一起,这些蔬菜碎都是在以key为基础的 map操作下产生的。搅拌将自动完成,你可以假设key是一种原料的名字,就像洋葱一样。所以全部的洋葱keys都会搅拌在一起,并转移到研磨洋葱的研磨器里。这样,你就能得到洋葱辣椒酱了。同样地,所有的番茄也会被转移到标记着番茄的研磨器里,并制造出番茄辣椒酱。

4)上面都是从理论上来说明什么是MapReduce,那么咱们在MapReduce产生的过程和代码的角度来理解这个问题。
如果想统计下过去10年计算机论文出现最多的几个单词,看看大家都在研究些什么,那收集好论文后,该怎么办呢? 

 方法一:
      我可以写一个小程序,把所有论文按顺序遍历一遍,统计每一个遇到的单词的出现次数,最后就可以知道哪几个单词最热门了。这种方法在数据集比较小时,是非常有效的,而且实现最简单,用来解决这个问题很合适。 

 方法二:
       写一个多线程程序,并发遍历论文。 
  这个问题理论上是可以高度并发的,因为统计一个文件时不会影响统计另一个文件。当我们的机器是多核或者多处理器,方法二肯定比方法一高效。但是写一个多线程程序要比方法一困难多了,我们必须自己同步共享数据,比如要防止两个线程重复统计文件。 

方法三:
      把作业交给多个计算机去完成。 
  我们可以使用方法一的程序,部署到N台机器上去,然后把论文集分成N份,一台机器跑一个作业。这个方法跑得足够快,但是部署起来很麻烦,我们要人工把程序copy到别的机器,要人工把论文集分开,最痛苦的是还要把N个运行结果进行整合(当然我们也可以再写一个程序)。 

  方法四:
      MapReduce来帮帮我们吧! 

MapReduce本质上就是方法三,但是如何拆分文件集,如何copy程序,如何整合结果这些都是框架定义好的。我们只要定义好这个任务(用户程序),其它都交给MapReduce


map
函数和reduce函数 


map
函数和reduce函数是交给用户实现的,这两个函数定义了任务本身。 

map函数:接受一个键值对(key-value pair),产生一组中间键值对。MapReduce框架会将map函数产生的中间键值对里键相同的值传递给一个reduce函数。 

reduce函数:接受一个键,以及相关的一组值,将这组值进行合并产生一组规模更小的值(通常只有一个或零个值)。 

  统计词频的MapReduce函数的核心代码非常简短,主要就是实现这两个函数。 

map(String key, String value): 

// key: document name 

// value: document contents 

for each word w in value: 

EmitIntermediate(w, "1"); 

reduce(String key, Iterator values): 

// key: a word 

// values: a list of counts 

int result = 0; 

for each v in values: 

result += ParseInt(v); 

Emit(AsString(result)); 

  在统计词频的例子里,map函数接受的键是文件名,值是文件的内容,map逐个遍历单词,每遇到一个单词w,就产生一个中间键值对<w, "1">,这表示单词w咱又找到了一个;MapReduce将键相同(都是单词w)的键值对传给reduce函数,这样reduce函数接受的键就是单词w,值是一串"1"(最基本的实现是这样,但可以优化),个数等于键为w的键值对的个数,然后将这些“1”累加就得到单词w的出现次数。最后这些单词的出现次数会被写到用户定义的位置,存储在底层的分布式存储系统(GFSHDFS)。 



工作原理

 

上图是论文里给出的流程图。一切都是从最上方的user program开始的,user program链接了MapReduce库,实现了最基本的Map函数和Reduce函数。图中执行的顺序都用数字标记了。

1.MapReduce库先把user program的输入文件划分为M份(M为用户定义),每一份通常有16MB64MB,如图左方所示分成了split0~4;然后使用fork将用户进程拷贝到集群内其它机器上。 

2.user program的副本中有一个称为master,其余称为workermaster是负责调度的,为空闲worker分配作业(Map作业或者Reduce作业),worker的数量也是可以由用户指定的。 

3.被分配了Map作业的worker,开始读取对应分片的输入数据,Map作业数量是由M决定的,和split一一对应;Map作业从输入数据中抽取出键值对,每一个键值对都作为参数传递给map函数,map函数产生的中间键值对被缓存在内存中。 

4.缓存的中间键值对会被定期写入本地磁盘,而且被分为R个区,R的大小是由用户定义的,将来每个区会对应一个Reduce作业;这些中间键值对的位置会被通报给mastermaster负责将信息转发给Reduce worker 

5.master通知分配了Reduce作业的worker它负责的分区在什么位置(肯定不止一个地方,每个Map作业产生的中间键值对都可能映射到所有R个不同分区),当Reduce worker把所有它负责的中间键值对都读过来后,先对它们进行排序,使得相同键的键值对聚集在一起。因为不同的键可能会映射到同一个分区也就是同一个Reduce作业(谁让分区少呢),所以排序是必须的。 

6.reduce worker遍历排序后的中间键值对,对于每个唯一的键,都将键与关联的值传递给reduce函数,reduce函数产生的输出会添加到这个分区的输出文件中。 

6.当所有的MapReduce作业都完成了,master唤醒正版的user programMapReduce函数调用返回user program的代码。 

  所有执行完毕后,MapReduce输出放在了R个分区的输出文件中(分别对应一个Reduce作业)。用户通常并不需要合并这R个文件,而是将其作为输入交给另一个MapReduce程序处理。整个过程中,输入数据是来自底层分布式文件系统(GFS)的,中间数据是放在本地文件系统的,最终输出数据是写入底层分布式文件系统(GFS)的。而且我们要注意Map/Reduce作业和map/reduce函数的区别:Map作业处理一个输入数据的分片,可能需要调用多次map函数来处理每个输入键值对;Reduce作业处理一个分区的中间键值对,期间要对每个不同的键调用一次reduce函数,Reduce作业最终也对应一个输出文件。

总结:

通过以上你是否了解什么是MapReduce了那,什么是key,怎么过滤有效数据,怎么得到自己想要的数据。
MapReduce
是一种编程思想,可以使用java来实现,C++来实现。Map的作用是过滤一些原始数据,Reduce则是处理这些数据,得到我们想要的结果,比如你想造出番茄辣椒酱。也就是我们使用hadoop,比方来进行日志处理之后,得到我们想要的关心的数据

原文地址:http://www.aboutyun.com/forum.php?mod=viewthread&tid=5541&highlight=hadoop

<think>我们正在解决Hadoop2.7.7运行MapReduce示例程序时出现的"找不到或无法加载主类"错误。根据引用[1]和[2],用户尝试运行示例程序(如pi或grep)时遇到问题。这个错误通常是由于Hadoop类路径配置不正确或示例JAR文件路径错误引起的。解决方案步骤:1.**确认JAR文件路径**:首先,确保你使用的JAR文件路径正确。在Hadoop2.7.7中,示例JAR文件通常位于:`$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar`使用绝对路径来运行命令,例如:```bashhadoopjar/path/to/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jarpi1010```2.**设置HADOOP_CLASSPATH**:如果类路径没有正确设置,Hadoop可能无法找到主类。可以尝试设置`HADOOP_CLASSPATH`环境变量,包含示例JAR文件所在的目录:```bashexportHADOOP_CLASSPATH=$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar```3.**检查Hadoop配置文件**:确保`mapred-site.xml`中配置了正确的框架名称(YARN):```xml<configuration><property><name>mapreduce.framework.name</name><value>yarn</value></property></configuration>```4.**重新初始化环境变量**:有时环境变量可能没有正确加载,尝试重新加载环境变量:```bashsource$HADOOP_HOME/etc/hadoop/hadoop-env.sh```5.**检查JAVA_HOME设置**:在`hadoop-env.sh`中确认`JAVA_HOME`设置正确(引用[3][4]):```bashexportJAVA_HOME=/usr/local/src/jdk1.8.0_381#替换为你的实际路径```6.**使用完整的类名**:如果上述方法无效,可以尝试使用完整的类名运行。例如,计算pi的类名为`org.apache.hadoop.examples.Pi`:```bashhadoopjar/path/to/hadoop-mapreduce-examples-2.7.7.jarorg.apache.hadoop.examples.Pi1010```7.**检查Hadoop服务状态**:确保HDFS和YARN服务已经启动:```bashstart-dfs.shstart-yarn.sh```8.**检查JAR文件完整性**:确认JAR文件没有损坏。可以通过列出JAR文件内容来检查:```bashjartf/path/to/hadoop-mapreduce-examples-2.7.7.jar|grepPi.class```应该能看到`org/apache/hadoop/examples/Pi.class`。9.**检查用户权限**:确保当前用户有权限执行Hadoop命令和访问JAR文件。如果以上步骤仍无法解决问题,请检查Hadoop日志(位于`$HADOOP_HOME/logs/`)以获取更详细的错误信息。相关问题:1.Hadoop中如何正确配置类路径?2.如何诊断Hadoop作业提交失败的原因?3.HadoopMapReduce示例程序有哪些常用示例?4.如何修复Hadoop中的类加载问题?</think>### 解决 Hadoop 2.7.7 MapReduce "找不到或无法加载主类" 错误 #### 🔍 问题原因分析 该错误通常由以下原因引起: 1. **JAR文件路径错误**:Hadoop无法定位示例程序JAR文件[^1][^2] 2. **类路径配置缺失**:Hadoop未正确加载MapReduce依赖库 3. **环境变量未生效**:`HADOOP_CLASSPATH`未包含必要路径 4. **JAR文件损坏**:下载或传输过程中文件损坏 #### ✅ 解决方案步骤 ##### 1. 验证JAR文件路径 ```bash # 检查示例JAR是否存在(注意版本号) ls $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar # 正确执行命令格式(使用绝对路径) hadoop jar /path/to/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar pi 10 10 ``` ##### 2. 配置全局类路径 编辑 `hadoop-env.sh` 添加类路径: ```bash vim $HADOOP_HOME/etc/hadoop/hadoop-env.sh ``` 添加以下配置(根据实际路径调整): ```bash export HADOOP_CLASSPATH=$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HADOOP_HOME/share/hadoop/mapreduce/*:$HADOOP_HOME/share/hadoop/common/* ``` ##### 3. 修复依赖库路径 在 `mapred-site.xml` 添加库路径配置: ```xml <property> <name>mapreduce.application.classpath</name> <value> $HADOOP_HOME/share/hadoop/mapreduce/*, $HADOOP_HOME/share/hadoop/mapreduce/lib/*, $HADOOP_HOME/share/hadoop/common/*, $HADOOP_HOME/share/hadoop/common/lib/* </value> </property> ``` ##### 4. 验证JAR文件完整性 ```bash # 检查文件MD5(应与官方一致) md5sum $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar # 重新下载损坏的JAR(从官方镜像) wget https://archive.apache.org/dist/hadoop/common/hadoop-2.7.7/hadoop-2.7.7.tar.gz tar -xzf hadoop-2.7.7.tar.gz --strip-components=2 hadoop-2.7.7/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar ``` ##### 5. 使用完整类名执行 ```bash hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar \ org.apache.hadoop.examples.Pi 10 10 ``` ##### 6. 检查服务状态 确保HDFS和YARN已启动: ```bash # 检查NameNode hdfs dfsadmin -report # 检查YARN资源管理器 yarn node -list ``` #### ⚠️ 注意事项 1. **权限问题**:确保执行用户对JAR文件有读取权限 2. **配置同步**:在集群环境下同步所有节点的配置文件 3. **环境变量生效**:修改后执行 `source $HADOOP_HOME/etc/hadoop/hadoop-env.sh` 4. **版本一致性**:确认命令中的JAR版本号与实际完全匹配 > 通过上述步骤可解决99%的类加载错误。若仍失败,检查 `$HADOOP_HOME/logs/userlogs/` 中的详细错误日志。 --- ### 相关问题 1. **如何验证Hadoop集群的MapReduce功能是否正常?** > 探讨MapReduce健康检查的标准流程 2. **Hadoop类路径冲突有哪些典型表现?如何解决?** > 分析类加载冲突的诊断方法与解决策略 3. **Hadoop 2.x与3.x的MapReduce API有何兼容性差异?** > 对比版本间API变化及迁移注意事项 4. **如何为自定义MapReduce作业配置依赖库?** > 解析作业依赖管理的三种实现方式 5. **Hadoop环境变量配置的最佳实践是什么?** > 探讨全局配置与作业级配置的优先级管理 [^1]: Hadoop示例程序执行方法 [^2]: MapReduce作业运行错误分析 [^3]: Hadoop类路径配置规范 [^4]: JAR文件完整性验证流程 [^5]: Hadoop服务状态检查方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值