Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 33812 | Accepted: 10419 |
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a pointN (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 orX + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Output
Sample Input
5 17
Sample Output
4
Hint
Source
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
#define maxn 100001
queue<int> x;
bool vis[maxn];
int step[maxn];
int bfs(int n,int k)
{
int head,next;
x.push(n);
vis[n]=1;
step[n]=0;
while(!x.empty())
{
head=x.front();
x.pop();
for(int i=0;i<3;i++)
{
if(i==0)
next=head+1;
else if(i==1)
next=head-1;
else if(i==2)
next=head*2;
if(next>maxn||next<0)
continue;
if(!vis[next])
{
x.push(next);
step[next]=step[head]+1;
vis[next]=1;
}
if(next==k) return step[next];
}
}
}
int main()
{
int n,k;
cin>>n>>k;
if(n>=k)
{
cout<<n-k<<endl;
}
else
{
cout<<bfs(n,k)<<endl;
}
return 0;
}