ACM刷题之POJ————A Simple Problem with Integers

本文介绍了一种基于线段树的数据结构解决区间加法操作及区间求和查询的问题。通过具体的AC代码实现,展示了如何高效地处理大规模数据集中的这类操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Simple Problem with Integers
Time Limit: 5000MS Memory Limit: 131072K
Total Submissions: 106659 Accepted: 33284
Case Time Limit: 2000MS

Description

You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of AaAa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.


线段树的裸题

不过这里多了一个区间更新,要注意一下

下面是ac代码

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<string>
#include<iostream>
using namespace std;
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
const int N=2e5+7;

#define max(a,b) (a>b)?a:b
#define min(a,b) (a>b)?b:a
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
#define LL __int64
const int maxn = 100100;
using namespace std;

LL lazy[maxn<<2];
LL sum[maxn<<2];

void putup(int rt)
{
  sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}

void putdown(int rt,int m)
{
  if (lazy[rt])
  {
    lazy[rt<<1] += lazy[rt];
    lazy[rt<<1|1] += lazy[rt];
    sum[rt<<1] += lazy[rt] * (m - (m >> 1));
    sum[rt<<1|1] += lazy[rt] * (m >> 1);
    lazy[rt] = 0;
  }
}

void build(int l,int r,int rt) {
  lazy[rt] = 0;
  if (l == r)
  {
    scanf("%I64d",&sum[rt]);
    return ;
  }
  int m = (l + r) >> 1;
  build(lson);
  build(rson);
  putup(rt);
}

void update(int L,int R,int c,int l,int r,int rt)
{
  if (L <= l && r <= R)
  {
    lazy[rt] += c;
    sum[rt] += (LL)c * (r - l + 1);
    return ;
  }
  putdown(rt , r - l + 1);
  int m = (l + r) >> 1;
  if (L <= m) update(L , R , c , lson);
  if (m < R) update(L , R , c , rson);
  putup(rt);
}

LL query(int L,int R,int l,int r,int rt)
{
  if (L <= l && r <= R)
  {
    return sum[rt];
  }
  putdown(rt , r - l + 1);
  int m = (l + r) >> 1;
  LL ret = 0;
  if (L <= m) ret += query(L , R , lson);
  if (m < R) ret += query(L , R , rson);
  return ret;
}

int main()
{
  int n , m;int a , b , c;
  char str[5];
  scanf("%d%d",&n,&m);
  build(1 , n , 1);
  while (m--)
  {
    scanf("%s",str);
    if (str[0] == 'Q')
    {
      scanf("%d%d",&a,&b);
      printf("%I64d\n",query(a , b , 1 , n , 1));
    }
    else if(str[0]=='C')
    {
      scanf("%d%d%d",&a,&b,&c);
      update(a , b , c , 1 , n , 1);
    }
  }
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值