Android消息机制

概述

Android消息在上层的接口是Handler,Handler所使用的相关的Looper、MessageQueue、ThreadLocal等类。我们经常使用的场景是我们需要做一些像I/O操作、联网等等耗时操作时需要更新Ui线程时需要使用Handler去发消息给UI线程去更新UI。 那Handler、Looper、MessageQueue、ThreadLocal这些类之间关系是怎样的呢?又是是怎么交互的呢?看看下面:

Handler、Looper、MessageQueue、ThreadLocal基本关系

Handler、Looper、MessageQueue是一个整体运作的,当我们使用Handler发送消息时,是像MessageQueue中的单链表中插入一条消息,Looper中的loop方法时阻塞的无限循环方法,当MessageQueue中有消息时就会处理这个消息通知Handler的回调去处理这个消息,直到MessageQueue中没有消息时Looper中的loop方法会继续进入阻塞状态。ThreadLocal可以在不同线程互不干扰的设置和存储数据,也是Handler获取当前线程Looper的关键。除了Ui线程其他线程是默认没有Looper的需要自己去创建,而Ui线程其实是ActivityThread,在ActivityThread的main方法中会调用Looper的prepare和loop方法,所以UI线程可以直接使用Looper。好了,基本关系了解了那我们看一个每个模块的主要方法的工作流程吧。

ThreadLocal工作流程

ThreadLocal中重要的是set和get方法,源码如下:

public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

public T get() {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null) {
        ThreadLocalMap.Entry e = map.getEntry(this);
        if (e != null) {
            @SuppressWarnings("unchecked")
            T result = (T)e.value;
            return result;
        }
    }
    return setInitialValue();
}

可以看到这两个方法都是获取当前Thread,每个Thread中都会有一个ThreadLocalMap用来存储各自线程的数据,如果ThreadLocalMap为null会创建一个ThreadLocalMap并赋值给当前线程。其他相关代码有兴趣的可以自己去看一下。

ThreadLocal可以在不同的线程中维护各自的数据,Looper就是借助了这个特性使用了ThreadLocal去把自己存储到每个Thread的ThreadLocalMap中,这样去获取Looper时可以通过ThreadLocal直接拿到当前线程的Looper。

MessageQueue工作流程

MessageQueue主要用来存放消息,里面的消息队列是一个单链表,主要方法是enqueueMessage和next方法,分别是Handler发送消息时用来将消息插入消息队列的和Looper中loop方法中遍历消息调用的next方法处理消息队列里面的消息,下面我们来看看这两个方法:

boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {//判断消息里是否有对应的handler(target存的是handler)
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }

    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w(TAG, e.getMessage(), e);
            msg.recycle();
            return false;
        }

        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr);//如果有消息插入就唤醒阻塞方法去处理消息
        }
    }
    return true;
}

上面方法中说到的链表是Message,Message对象池其实是通过链表的结构组合起来的池。具体的可以看这个链接里面有说道:https://www.jianshu.com/p/8ecacbb97af4 , 里面也提到了Message对象的复用,对应的设计模式享元模式,有兴趣的可以自己去研究。

Message next() {
    // Return here if the message loop has already quit and been disposed.
    // This can happen if the application tries to restart a looper after quit
    // which is not supported.
    final long ptr = mPtr;
    if (ptr == 0) {
        return null;
    }

    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {//无限循环
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);//没有消息时阻塞在管道的读端,等待有消息时被唤醒

        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }

            // Process the quit message now that all pending messages have been handled.
            if (mQuitting) {
                dispose();
                return null;
            }

            // If first time idle, then get the number of idlers to run.
            // Idle handles only run if the queue is empty or if the first message
            // in the queue (possibly a barrier) is due to be handled in the future.
            if (pendingIdleHandlerCount < 0
                    && (mMessages == null || now < mMessages.when)) {
                pendingIdleHandlerCount = mIdleHandlers.size();
            }
            if (pendingIdleHandlerCount <= 0) {
                // No idle handlers to run.  Loop and wait some more.
                mBlocked = true;
                continue;
            }

            if (mPendingIdleHandlers == null) {
                mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
            }
            mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
        }

        // Run the idle handlers.
        // We only ever reach this code block during the first iteration.
        for (int i = 0; i < pendingIdleHandlerCount; i++) {
            final IdleHandler idler = mPendingIdleHandlers[i];
            mPendingIdleHandlers[i] = null; // release the reference to the handler

            boolean keep = false;
            try {
                keep = idler.queueIdle();
            } catch (Throwable t) {
                Log.wtf(TAG, "IdleHandler threw exception", t);
            }

            if (!keep) {
                synchronized (this) {
                    mIdleHandlers.remove(idler);
                }
            }
        }

        // Reset the idle handler count to 0 so we do not run them again.
        pendingIdleHandlerCount = 0;

        // While calling an idle handler, a new message could have been delivered
        // so go back and look again for a pending message without waiting.
        nextPollTimeoutMillis = 0;
    }
}

next方法里面会无限循环遍历链表,没消息时阻塞,有消息时将消息返回,并将该消息从链表中删除。

Looper工作流程

ActivityThread的main方法会调用Looper.prepareMainLooper(),看一下main方法里面的调用:

Looper.prepareMainLooper();//给UI线程创建Looper
    
    ActivityThread thread = new ActivityThread();
    thread.attach(false);

    if (sMainThreadHandler == null) {
        sMainThreadHandler = thread.getHandler();
    }

    if (false) {
        Looper.myLooper().setMessageLogging(new
                LogPrinter(Log.DEBUG, "ActivityThread"));
    }

    // End of event ActivityThreadMain.
    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
    Looper.loop();//开始UI线程的无限循环处理消息

看Looper里面对应方法prepareMainLooper的源码:

public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

可以看到prepareMainLooper会调用prepare方法,看一下prepare方法:

private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        //重复prepare会抛出异常
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}

可以看到prepare方法会创建一个Looper对象并调用ThreadLocal的set()方法保存到当前线程的ThreadLocalMap中去,每个线程只有一个Looper,重复prepare会抛出异常。

接下来看看最主要的loop()方法:

/**
 * Run the message queue in this thread. Be sure to call
 * {@link #quit()} to end the loop.
 */
public static void loop() {
    final Looper me = myLooper();//拿到当前线程的Looper
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;//创建Looper时也会创建一个MessageQueue

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();//重置ipc标志
    final long ident = Binder.clearCallingIdentity();

    for (;;) {
        //调用MessageQueue的next方法,如果next返回null就会退出loop的循环 
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        final Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }

        final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

        final long traceTag = me.mTraceTag;
        if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
            Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
        }
        final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
        final long end;
        try {
            msg.target.dispatchMessage(msg);
            end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
        } finally {
            if (traceTag != 0) {
                Trace.traceEnd(traceTag);
            }
        }
        if (slowDispatchThresholdMs > 0) {
            final long time = end - start;
            if (time > slowDispatchThresholdMs) {
                Slog.w(TAG, "Dispatch took " + time + "ms on "
                        + Thread.currentThread().getName() + ", h=" +
                        msg.target + " cb=" + msg.callback + " msg=" + msg.what);
            }
        }

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycleUnchecked();
    }
}

loop会一直循环,next是个阻塞方法,next没有消息时也会将loop方法阻塞,next返回null时,Looper就会退出。next方法有消息返回时,会调用Handler的dispatchMessage(msg)方法。下面看一下Handler。

Handler工作流程

1.先看一下dispatchMessage()方法

/**
 * Handle system messages here.
 */
public void dispatchMessage(Message msg) {
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}

dispatchMessage()通知回调有三种

(1).先处理message的callback,不为空的话直接run,对应的是handler.post()传过来的Runnable对象

(2).message的callback为null的话,处理handler的创建时传过来的callback,里面重写的handleMessage()方法

(3).直接回调创建Handler是的的内部类里面的handleMessage()方法

图里可以看到逻辑

2.再看一下发送消息

最终都会调用到下面这个方法

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}

然后向MessageQueue里面插入消息

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}

插入后等待Looper去处理即可。

总结

大概介绍了一下Android消息的基本流程,Handler、Looper、MessageQueue之间的协作。里面还有一些细节比如Message的链表结构以及享元模式等等知识点后面再去学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值