剑指offer:6-重建二叉树

本文详细介绍了二叉树的三种遍历方式:前序、中序和后序,并提供了对应的递归和循环实现代码,帮助读者理解和实现二叉树遍历。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二叉树的遍历方式:前序、中序和后序。每种遍历均有递归和循环两种不同方法。递归实现要比循环简洁。


直接上代码:

二叉树节点结构:

(下面参考原书代码)

//BinaryTreeNode.h
#ifndef BINARY_TREE_NODE_H
#define BINARY_TREE_NODE_H
struct BinaryTreeNode
{
	int nValue;
	BinaryTreeNode *pLeftChild;
	BinaryTreeNode *pRightChild;
};
#endif

//BinaryTreeOperation.h
#ifndef BINARY_TREE_OPERATION_H
#define BINARY_TREE_OPERATION_H

#include "BinaryTreeNode.h"
//构造二进制树节点
BinaryTreeNode *CreateBinaryTreeNode(int value);

//连接树节点
void ConnectTreeNodes(
	BinaryTreeNode *pParent,
	BinaryTreeNode *pLeftChild,
	BinaryTreeNode *pRightChild
	);

//打印树节点
void PrintTreeNode(BinaryTreeNode *pNode);

//打印树
void PrintTree(BinaryTreeNode *pRoot);

//销毁树
void DestroyTree(BinaryTreeNode *pRoot);

#endif

//BinaryTreeOperation.cpp
#include "BinaryTreeOperation.h"
#include <iostream>
using namespace std;

//构造二进制树节点
BinaryTreeNode *CreateBinaryTreeNode(int value)
{
	BinaryTreeNode *pNode = new BinaryTreeNode();
	pNode->nValue = value;
	pNode->pLeftChild = NULL;
	pNode->pRightChild = NULL;

	return pNode;
}

//连接树节点
void ConnectTreeNodes(
	BinaryTreeNode *pParent,
	BinaryTreeNode *pLeftChild,
	BinaryTreeNode *pRightChild
	)
{
	if (pParent != NULL)
	{
		pParent->pLeftChild = pLeftChild;
		pParent->pRightChild = pRightChild;
	}
}

//打印树节点
void PrintTreeNode(BinaryTreeNode *pNode)
{
	if (pNode != NULL)
	{
		cout << "value of this node is: " << pNode->nValue << endl;
		if (pNode->pLeftChild != NULL)
			cout << "value of its left child is: " << pNode->pLeftChild->nValue << endl;
		else
			cout << "its left child is null.\n";
		if(pNode->pRightChild != NULL)
			cout << "value of its right child is: " << pNode->pRightChild->nValue << endl;
		else
			cout << "its right child is null.\n";
	}
	else
		cout << "this node is null.\n";
	cout << endl;
}

//打印树
void PrintTree(BinaryTreeNode *pRoot)
{
	PrintTreeNode(pRoot);
	if (pRoot != NULL)
	{
		if (pRoot->pLeftChild != NULL)
			PrintTree(pRoot->pLeftChild);

		if(pRoot->pRightChild != NULL)
			PrintTree(pRoot->pRightChild);
	}
}

//销毁树
void DestroyTree(BinaryTreeNode *pRoot)
{
	if (pRoot != NULL)
	{
		BinaryTreeNode *pLeft = pRoot->pLeftChild;
		BinaryTreeNode *pRight = pRoot->pRightChild;
		delete pRoot;
		pRoot = NULL;

		DestroyTree(pLeft);
		DestroyTree(pRight);
	}
}

//main.cpp
#include "BinaryTreeNode.h"
#include "BinaryTreeOperation.h"
#include <iostream>
#include <exception>
using namespace std;

BinaryTreeNode *ConstructCore(
	int *startPreorder,
	int *endPreorder,
	int *strartInorder,
	int *endInorder
	)
{
	//前序遍历序列的第一个元素是根节点的值.
	int rootValue = startPreorder[0];
	BinaryTreeNode *root = new BinaryTreeNode();
	root->nValue = rootValue;
	root->pLeftChild = root->pRightChild = NULL;

	if (startPreorder == endPreorder)
	{
		if(strartInorder == endInorder && *startPreorder == *strartInorder)
			return root;
		else throw exception("Invalid input!");
	}

	//在中序遍历中找到根节点的值.
	int *rootInorder = strartInorder;
	while(rootInorder <= endInorder && *rootInorder != rootValue)
		++rootInorder;

	if(rootInorder == endInorder && *rootInorder != rootValue)
		throw exception("Invalid input.");

	int leftLength = rootInorder - strartInorder;
	int *leftPreorderEnd = startPreorder + leftLength;
	//若左子树长度大于零,则存在左子树,构建左子树
	if (leftLength > 0)
		root->pLeftChild = ConstructCore(startPreorder + 1,leftPreorderEnd,
		strartInorder,rootInorder - 1);
	//若左子树长度小于总长度,则存在右子树,构建右子树
	if(leftLength < endPreorder - startPreorder)
		root->pRightChild = ConstructCore(leftPreorderEnd + 1,endPreorder,
		rootInorder+1,endInorder);

	return root;
}


BinaryTreeNode *Construct(
	int *preorder,
	int *inorder,
	int length
	)
{
	if(preorder == NULL ||inorder == NULL || length <= 0)
		return NULL;
	return ConstructCore(preorder,preorder + length -1,
		inorder,inorder + length - 1);
}


//=========================测试代码===========================
void Test(
	char *testName,
	int *preorder,
	int *inorder,
	int length
	)
{
	if(testName != NULL)
		cout << "begins: " << testName << endl;
	cout << "the preorder sequence is: ";
	for (int i = 0;i < length;++i)
		cout << preorder[i] << " ";
	cout << endl << "the inorder sequence is: ";
	for (int i = 0;i < length;++i)
		cout << inorder[i] << " ";
	cout << endl;

	try
	{
		BinaryTreeNode *root = Construct(preorder,inorder,length);
		PrintTree(root);
		DestroyTree(root);
	}
	catch (exception& exception)
	{
		cout << "Invalid Input.\n";
	}
	//cout << endl;
}

// 普通二叉树
//              1
//           /     \
//          2       3  
//         /       / \
//        4       5   6
//         \         /
//          7       8
void Test1()
{
	const int length = 8;
	int preorder[length] = {1, 2, 4, 7, 3, 5, 6, 8};
	int inorder[length] = {4, 7, 2, 1, 5, 3, 8, 6};

	Test("Test1", preorder, inorder, length);
}

// 所有结点都没有右子结点
//            1
//           / 
//          2   
//         / 
//        3 
//       /
//      4
//     /
//    5
void Test2()
{
	const int length = 5;
	int preorder[length] = {1, 2, 3, 4, 5};
	int inorder[length] = {5, 4, 3, 2, 1};

	Test("Test2", preorder, inorder, length);
}

// 所有结点都没有左子结点
//            1
//             \ 
//              2   
//               \ 
//                3 
//                 \
//                  4
//                   \
//                    5
void Test3()
{
	const int length = 5;
	int preorder[length] = {1, 2, 3, 4, 5};
	int inorder[length] = {1, 2, 3, 4, 5};

	Test("Test3", preorder, inorder, length);
}

// 树中只有一个结点
void Test4()
{
	const int length = 1;
	int preorder[length] = {1};
	int inorder[length] = {1};

	Test("Test4", preorder, inorder, length);
}

// 完全二叉树
//              1
//           /     \
//          2       3  
//         / \     / \
//        4   5   6   7
void Test5()
{
	const int length = 7;
	int preorder[length] = {1, 2, 4, 5, 3, 6, 7};
	int inorder[length] = {4, 2, 5, 1, 6, 3, 7};

	Test("Test5", preorder, inorder, length);
}

// 输入空指针
void Test6()
{
	Test("Test6", NULL, NULL, 0);
}

// 输入的两个序列不匹配
void Test7()
{
	const int length = 7;
	int preorder[length] = {1, 2, 4, 5, 3, 6, 7};
	int inorder[length] = {4, 2, 8, 1, 6, 3, 7};

	Test("Test7: for unmatched input", preorder, inorder, length);
}

int main()
{
	Test1();
	Test2();
	Test3();
	Test4();
	Test5();
	Test6();
	Test7();
	return 0;
}

运行结果如下:



最后构建的二叉树如下所示:





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值