TensorFlow 实现Nearest Neighbor
#coding: utf-8
#Env:
#python 2.7
#tensorflow 1.1.0
#numpy 1.12.1
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#导入mnist数据集
mnist = input_data.read_data_sets('data2/', one_hot=True)
#重置图(这个是为了用于多次运行)
tf.reset_default_graph()
#使用训练集数目为5000条
#使用验证集(测试集)数目为300
Xtr, Ytr = mnist.train.next_batch(5000)
Xte, Yte = mnist.test.next_batch(300)
xtr = tf.placeholder('float', [None, 784])
xte = tf.placeholder('float', [784])
#计算各个对应位置的距离(减法使用广播形式)
#底下俩作用相同
distance = tf.reduce_sum(tf.abs(tf.subtract(xtr, xte)), reduction_indices=1)
#distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))), reduction_indices=1)
#寻找距离最近(即最相似的行所在位置)
pred = tf.arg_min(distance, 0)
accuracy = 0.
#初始化
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(len(Xte)):
#计算最相近的所在行位置
nn_index = sess.run(pred, feed_dict={xtr:Xtr, xte: Xte[i, :]})
#取出测试集上最相近行对应的label与真是label对比
print 'Test', i, 'Prediction: ', np.argmax(Ytr[nn_index]),\
'True Class: ', np.argmax(Yte[i])
if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]):
accuracy += 1./len(Xte)
print 'Done!'
print 'Accuracy: ', accuracy