scipy-fftpack-dct-idct

本文介绍了如何使用Python的NumPy库进行离散余弦变换(DCT)和逆离散余弦变换(IDCT),并确保变换过程中的正交规范化。通过定义lambda函数来调用fftpack模块中的DCT和IDCT函数,并设置参数norm='ortho',实现了对三维随机数组的多次变换与逆变换,最终得到原始数组,验证了变换的正确性和可逆性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

It looks like dct and idct do not normalize by default. define dct to call fftpack.dct in the following manner. Do the same for idct.

In [13]: dct = lambda x: fftpack.dct(x, norm='ortho')

In [14]: idct = lambda x: fftpack.idct(x, norm='ortho')

Once done, you will get back the original answers after performing the transforms.

In [19]: import numpy

In [20]: a = numpy.random.rand(3,3,3)

In [21]: d = dct(dct(dct(a).transpose(0,2,1)).transpose(2,1,0)).transpose(2,1,0).transpose(0,2,1)

In [22]: e = idct(idct(idct(d).transpose(0,2,1)).transpose(2,1,0)).transpose(2,1,0).transpose(0,2,1)

In [23]: a
Out[23]: 
array([[[ 0.51699637,  0.42946223,  0.89843545],
        [ 0.27853391,  0.8931508 ,  0.34319118],
        [ 0.51984431,  0.09217771,  0.78764716]],

       [[ 0.25019845,  0.92622331,  0.06111409],
        [ 0.81363641,  0.06093368,  0.13123373],
        [ 0.47268657,  0.39635091,  0.77978269]],

       [[ 0.86098829,  0.07901332,  0.82169182],
        [ 0.12560088,  0.78210188,  0.69805434],
        [ 0.33544628,  0.81540172,  0.9393219 ]]])

In [24]: e
Out[24]: 
array([[[ 0.51699637,  0.42946223,  0.89843545],
        [ 0.27853391,  0.8931508 ,  0.34319118],
        [ 0.51984431,  0.09217771,  0.78764716]],

       [[ 0.25019845,  0.92622331,  0.06111409],
        [ 0.81363641,  0.06093368,  0.13123373],
        [ 0.47268657,  0.39635091,  0.77978269]],

       [[ 0.86098829,  0.07901332,  0.82169182],
        [ 0.12560088,  0.78210188,  0.69805434],
        [ 0.33544628,  0.81540172,  0.9393219 ]]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值