java4种线程池的使用

Java通过Executors提供四种线程池,分别为:
newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。

newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。

    package test;  
    import java.util.concurrent.ExecutorService;  
    import java.util.concurrent.Executors;  
    public class ThreadPoolExecutorTest {  
     public static void main(String[] args) {  
      ExecutorService cachedThreadPool = Executors.newCachedThreadPool();  
      for (int i = 0; i < 10; i++) {  
       final int index = i;  
       try {  
        Thread.sleep(index * 1000);  
       } catch (InterruptedException e) {  
        e.printStackTrace();  
       }  
       cachedThreadPool.execute(new Runnable() {  
        public void run() {  
         System.out.println(index);  
        }  
       });  
      }  
     }  
    }  
线程池为无限大,当执行第二个任务时第一个任务已经完成,会复用执行第一个任务的线程,而不用每次新建线程。
 
(2) newFixedThreadPool
创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。示例代码如下:

    package test;  
    import java.util.concurrent.ExecutorService;  
    import java.util.concurrent.Executors;  
    public class ThreadPoolExecutorTest {  
     public static void main(String[] args) {  
      ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);  
      for (int i = 0; i < 10; i++) {  
       final int index = i;  
       fixedThreadPool.execute(new Runnable() {  
        public void run() {  
         try {  
          System.out.println(index);  
          Thread.sleep(2000);  
         } catch (InterruptedException e) {  
          e.printStackTrace();  
         }  
        }  
       });  
      }  
     }  
    }  

因为线程池大小为3,每个任务输出index后sleep 2秒,所以每两秒打印3个数字。
定长线程池的大小最好根据系统资源进行设置。如Runtime.getRuntime().availableProcessors()

 

(3)  newScheduledThreadPool
创建一个定长线程池,支持定时及周期性任务执行。延迟执行示例代码如下:

package test;  
import java.util.concurrent.Executors;  
import java.util.concurrent.ScheduledExecutorService;  
import java.util.concurrent.TimeUnit;  
public class ThreadPoolExecutorTest {  
 public static void main(String[] args) {  
  ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5);  
  scheduledThreadPool.schedule(new Runnable() {  
   public void run() {  
    System.out.println("delay 3 seconds");  
   }  
  }, 3, TimeUnit.SECONDS);  
 }  
} 

表示延迟3秒执行。

定期执行示例代码如下:

package test;  
import java.util.concurrent.Executors;  
import java.util.concurrent.ScheduledExecutorService;  
import java.util.concurrent.TimeUnit;  
public class ThreadPoolExecutorTest {  
 public static void main(String[] args) {  
  ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5);  
  scheduledThreadPool.scheduleAtFixedRate(new Runnable() {  
   public void run() {  
    System.out.println("delay 1 seconds, and excute every 3 seconds");  
   }  
  }, 1, 3, TimeUnit.SECONDS);  
 }  
} 
表示延迟1秒后每3秒执行一次。

 

(4) newSingleThreadExecutor
创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。示例代码如下:

package test;  
import java.util.concurrent.ExecutorService;  
import java.util.concurrent.Executors;  
public class ThreadPoolExecutorTest {  
 public static void main(String[] args) {  
  ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();  
  for (int i = 0; i < 10; i++) {  
   final int index = i;  
   singleThreadExecutor.execute(new Runnable() {  
    public void run() {  
     try {  
      System.out.println(index);  
      Thread.sleep(2000);  
     } catch (InterruptedException e) {  
      e.printStackTrace();  
     }  
    }  
   });  
  }  
 }  
} 
结果依次输出,相当于顺序执行各个任务。

你可以使用JDK自带的监控工具来监控我们创建的线程数量,运行一个不终止的线程,创建指定量的线程,来观察:
工具目录:C:\Program Files\Java\jdk1.6.0_06\bin\jconsole.exe
运行程序做稍微修改:

package test;  
import java.util.concurrent.ExecutorService;  
import java.util.concurrent.Executors;  
public class ThreadPoolExecutorTest {  
 public static void main(String[] args) {  
  ExecutorService singleThreadExecutor = Executors.newCachedThreadPool();  
  for (int i = 0; i < 100; i++) {  
   final int index = i;  
   singleThreadExecutor.execute(new Runnable() {  
    public void run() {  
     try {  
      while(true) {  
       System.out.println(index);  
       Thread.sleep(10 * 1000);  
      }  
     } catch (InterruptedException e) {  
      e.printStackTrace();  
     }  
    }  
   });  
   try {  
    Thread.sleep(500);  
   } catch (InterruptedException e) {  
    e.printStackTrace();  
   }  
  }  
 }  
} 

效果如下:


选择我们运行的程序:



监控运行状态




混合动力汽车(HEV)模型的Simscape模型(Matlab代码、Simulink仿真实现)内容概要:本文档介绍了一个混合动力汽车(HEV)的Simscape模型,该模型通过Matlab代码和Simulink仿真工具实现,旨在对混合动力汽车的动力系统进行建模与仿真分析。模型涵盖了发动机、电机、电池、传动系统等关键部件,能够模拟车辆在不同工况下的能量流动与控制策略,适用于动力系统设计、能耗优化及控制算法验证等研究方向。文档还提及该资源属于一个涵盖多个科研领域的MATLAB仿真资源包,涉及电力系统、机器学习、路径规划、信号处理等多个技术方向,配套提供网盘下载链接,便于用户获取完整资源。; 适合人群:具备Matlab/Simulink使用基础的高校研究生、科研人员及从事新能源汽车系统仿真的工程技术人员。; 使用场景及目标:①开展混合动力汽车能量管理策略的研究与仿真验证;②学习基于Simscape的物理系统建模方法;③作为教学案例用于车辆工程或自动化相关课程的实践环节;④与其他优化算法(如智能优化、强化学习)结合,实现控制策略的优化设计。; 阅读建议:建议使用者先熟悉Matlab/Simulink及Simscape基础操作,结合文档中的模型结构逐步理解各模块功能,可在此基础上修改参数或替换控制算法以满足具体研究需求,同时推荐访问提供的网盘链接获取完整代码与示例文件以便深入学习与调试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值