UVA208—— Firetruck【DFS + 并查集】

本文介绍了一种优化的火警路线算法,通过并查集预处理不可达节点,结合深度优先搜索(DFS),高效找出从消防站到火灾地点的所有可能路径,避免重复访问节点,确保消防车辆快速直达现场。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Center City fire department collaborates with the transportation department to maintain maps of the city which reflects the current status of the city streets. On any given day, several streets are closed for repairs or construction. Firefighters need to be able to select routes from the firestations to fires that do not use closed streets. Central City is divided into non-overlapping fire districts, each containing a single firestation. When a fire is reported, a central dispatcher alerts the firestation of the district where the fire is located and gives a list of possible routes from the firestation to the fire. You must write a program that the central dispatcher can use to generate routes from the district firestations to the fires.

Input

The city has a separate map for each fire district. Streetcorners of each map are identified by positive integers less than 21, with the firestation always on corner #1. The input file contains several test cases representing different fires in different districts.

• The first line of a test case consists of a single integer which is the number of the streetcorner closest to the fire.

• The next several lines consist of pairs of positive integers separated by blanks which are the adjacent streetcorners of open streets. (For example, if the pair 4 7 is on a line in the file, then the street between streetcorners 4 and 7 is open. There are no other streetcorners between 4 and 7 on that section of the street.)

• The final line of each test case consists of a pair of 0’s.

Output

For each test case, your output must identify the case by number (‘CASE 1:’, ‘CASE 2:’, etc).

It must list each route on a separate line, with the streetcorners written in the order in which they appear on the route. And it must give the total number routes from firestation to the fire. Include only routes which do not pass through any streetcorner more than once. (For obvious reasons, the fire department doesn’t want its trucks driving around in circles.)

Output from separate cases must appear on separate lines.

Sample Input

6

1 2

1 3

3 4

3 5

4 6

5 6

2 3

2 4

0 0

4

2 3

3 4

5 1

1 6

7 8

8 9

2 5

5 7

3 1

1 8

4 6

6 9

0 0

Sample Output

CASE 1:

1 2 3 4 6

1 2 3 5 6

1 2 4 3 5 6

1 2 4 6

1 3 2 4 6

1 3 4 6

1 3 5 6

There are 7 routes from the firestation to streetcorner 6.

CASE 2:

1 3 2 5 7 8 9 6 4

1 3 4

1 5 2 3 4

1 5 7 8 9 6 4

1 6 4

1 6 9 8 7 5 2 3 4

1 8 7 5 2 3 4

1 8 9 6 4

There are 8 routes from the firestation to streetcorner 4.

题目大意:从起点1到给定的终点n为一共有多少条路可以走,并且按照字典序的大小输出。

大致思路:最开始看到这道题时以为就是简单的DFS搜索一下就可以了,然后就超时了。其实这道题科已优化一下,我们把已经不可能到达的店标记一下,在搜索的时候就不在访问这些点,这样优化过后就可以过了。那么我们怎么知道这些点是否可以到达终点呢?我们可以用并查集在输入图的时候处理一下就可以了,把所有与起点相连的店都归为一类就行了。

#include <bits/stdc++.h>
using namespace std;

int target;
int maze[22][22];
int ans[1000010];
bool vis[22];
int cnt;
int pre[22];

void init(){
	for(int i = 1; i <= 21; i++)
		pre[i] = i;
}

inline int find(int x){
	if(x == pre[x]) return pre[x];
	else{
		pre[x] = find(pre[x]);
		return pre[x];
	}
}

inline void join(int x,int y){
	int fx = find(x),fy = find(y);
	if(fx != fy){
		pre[fx] = fy;
	}
}

void DFS(int st,int d){
	if(st == target){
		cnt++;
		for(int i = 0; i < d - 1; i++)
			printf("%d ",ans[i]);
		printf("%d\n",ans[d - 1]);
		return;
	}
	for(int i = 1 ; i <= 21; i++){
		if(!vis[i] && maze[st][i]){
			ans[d] = i;
			vis[i] = 1;
			DFS(i,d + 1);
			vis[i] = 0;
		}
	}
}

int main(int argc, char const *argv[])
{
	int kase = 0;
	while(~scanf("%d",&target)){
		int to,next;
		cnt = 0;
		init();
		memset(maze,0,sizeof(maze));
		while(~scanf("%d %d",&to,&next)){
            if(to == 0 && next == 0) break;
			maze[to][next] = 1;
			maze[next][to] = 1;
			if(find(to) != find(next)){
				join(to,next);
			}
		}
		memset(vis,0,sizeof(vis));
		vis[1] = 1;
		for(int i = 1; i <= 21; i++){
			if(find(i) != find(target)) vis[i] = 1;
		}
		printf("CASE %d:\n",++kase);
		ans[0] = 1;
		DFS(1,1);
		printf("There are %d routes from the firestation to streetcorner %d.\n",cnt,target);
	}
	return 0;
}

 

内容概要:文章基于4A架构(业务架构、应用架构、数据架构、技术架构),对SAP的成本中心和利润中心进行了详细对比分析。业务架构上,成本中心是成本控制的责任单元,负责成本归集与控制,而利润中心是利润创造的独立实体,负责收入、成本和利润的核算。应用架构方面,两者都依托于SAP的CO模块,但功能有所区分,如成本中心侧重于成本要素归集和预算管理,利润中心则关注内部交易核算和获利能力分析。数据架构中,成本中心与利润中心存在多对一的关系,交易数据通过成本归集、分摊和利润计算流程联动。技术架构依赖SAP S/4HANA的内存计算和ABAP技术,支持实时核算与跨系统集成。总结来看,成本中心和利润中心在4A架构下相互关联,共同为企业提供精细化管理和决策支持。 适合人群:从事企业财务管理、成本控制或利润核算的专业人员,以及对SAP系统有一定了解的企业信息化管理人员。 使用场景及目标:①帮助企业理解成本中心和利润中心在4A架构下的运作机制;②指导企业在实施SAP系统时合理配置成本中心和利润中心,优化业务流程;③提升企业对成本和利润的精细化管理水平,支持业务决策。 其他说明:文章不仅阐述了理论概念,还提供了具体的应用场景和技术实现方式,有助于读者全面理解并应用于实际工作中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值