You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.
Input
Input starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).
Output
For each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.
Sample Input
5
123456 1
123456 2
2 31
2 32
29 8751919
Sample Output
Case 1: 123 456
Case 2: 152 936
Case 3: 214 648
Case 4: 429 296
Case 5: 665 669
题目大意:就是让你求一组数的前三个数,和后三个数。这道题后三个数直接%1000就可以了,注意要考虑后三位数不足三位要补零的情况。主要就是前三个数不好求。假设n^k=a.bc*10^m。方程两边同时对10求log,得到k*log10(n)=m+log10(a.bc)。然后直接减去前面的整数部分,再求10^log10(a.bc)最后在*100就可以了。注意数字的类型的转换。
#include<algorithm>
#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
const int mod=1000;
typedef long long LL;
LL poww(LL a,LL b){
LL ans=1;
while(b){
if(b&1) ans=(ans*a)%mod;
a=((a%mod)*(a%mod))%mod;
b>>=1;
}
return ans%mod;
}
int main(){
int t;
//LL n,k;
cin>>t;
int kase=0;
while(t--){
LL n,k;
scanf("%lld%lld",&n,&k);
LL sum=poww(n,k);
LL ans1=sum,ans2=0;
double q=k*log10(n)-(int)(k*log10(n));
q=pow(10,q);
ans2=q*100;//前三位数字
/*printf("前三位:%lld\n",ans2);
printf("后三位:%lld\n",ans1);*/
printf("Case %d: %lld %03lld\n",++kase,ans2,ans1);
}
return 0;
}
本文介绍了一种高效算法,用于求解大数幂运算结果的前三位和后三位数字。通过数学变换和编程技巧,避免了直接计算大数幂带来的内存和计算资源消耗。使用对数和模运算,文章详细解释了如何找到n^k的最显著三位和最不显著三位。
196

被折叠的 条评论
为什么被折叠?



