poj2387——Til the Cows Come Home【最短路】

本文介绍了一道关于寻找两点间最短路径的经典算法题。题目要求确定牛Bessie从田地返回谷仓的最短路线。文中提供了三种不同的算法实现,包括Bellman-Ford算法、Dijkstra算法和SPFA算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Til the Cows Come Home
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 66783 Accepted: 22454

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. 

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it. 

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N 

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS: 

There are five landmarks. 

OUTPUT DETAILS: 

Bessie can get home by following trails 4, 3, 2, and 1.

题目链接

简单的模板题,用了三种模板解这道题。

bellman_ford算法

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<iostream>
#include<cmath>
#define MAXN 200010
#define INF 0x3f3f3f3f  
using namespace std;
struct node{
	int to,next,cost;
}edge[MAXN];
int dis[MAXN];
int t,n;//t是边数,n是顶点数 
//求解从顶点s出发到所有点的最短距离 
void bellman_ford(int t,int n){
	//int dis[MAXN];
	memset(dis,INF,sizeof(dis));
	dis[1]=0;
	int check;
	for(int k=1;k<=n;k++){
		check=0;
		for(int i=1;i<=t;i++){
			if(dis[edge[i].to]>dis[edge[i].next]+edge[i].cost){
				dis[edge[i].to]=dis[edge[i].next]+edge[i].cost;
				check=1;
			}
			if(dis[edge[i].next]>dis[edge[i].to]+edge[i].cost){
				dis[edge[i].next]=dis[edge[i].to]+edge[i].cost;
				check=1;
			}
		}
		if(check==0) break;
	}
	//printf("%d\n",dis[n]);
}
//检查负权回路
bool find_negative_loop(){
	//memset(dis,0,sizeof(dis));
	bool flag=false;
	for(int i=1;i<=t;i++){
		node e=edge[i];
		if(dis[e.to]>dis[e.next]+e.cost){
			flag=true;//说明存在负权回路 
		}
	}
	if(flag) return true;
	return false;
} 
int main(){
	while(~scanf("%d%d",&t,&n)){
		//memset(dis,INF,sizeof(dis));
		for(int i=1;i<=t;i++){
			scanf("%d%d%d",&edge[i].to,&edge[i].next,&edge[i].cost);
		} 
		bellman_ford(t,n);
		if(!find_negative_loop())
			printf("%d\n",dis[n]);
	}
	return 0;
}
dijkstra写法:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#define MAXN 1010
#define INF 0xfffffff
using namespace std;
typedef struct node{
	int to,cost;
	node(int a,int b){
		to=a;
		cost=b;
	};
	bool friend operator <(node a,node b){
		if(a.cost!=b.cost) return a.cost>b.cost;
		return a.to>b.to;
	}
};
vector<node> G[MAXN];
int dis[MAXN],n,t;
void dijkstra(int s){
	fill(dis,dis+n+1,INF);
	dis[s]=0;
	priority_queue<node> que;
	que.push(node(s,dis[s]));//原点入队
	while(!que.empty()){
		node f=que.top();que.pop();
		for(int i=0;i<G[f.to].size();i++){
			node t=G[f.to][i];
			if(dis[t.to]>t.cost+f.cost){
				dis[t.to]=t.cost+f.cost;
				que.push(node(t.to,dis[t.to]));
			}
		}
	} 
}
int main(){
	int p,q,w;
	while(~scanf("%d%d",&t,&n)){
		for(int i=0;i<=n;i++) G[i].clear();
		while(t--){
			scanf("%d%d%d",&p,&q,&w);
			G[p].push_back(node(q,w));
			G[q].push_back(node(p,w));
		}
		dijkstra(1);
		printf("%d\n",dis[n]);
	}
	return 0;
}
spfa写法:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#define MAXN 200010
#define INF  0x3f3f3f3f  
using namespace std;
int n,t;
int top;
int head[MAXN],dis[MAXN];
struct node{
	int to,next,cost;
}edge[MAXN];
//建立领接表 
void addEdge(int u,int v,int cot){
	edge[top].to=v;
	edge[top].next=head[u];
	edge[top].cost=cot;
	head[u]=top++;
}
void spfa(int x){
	queue<int> que;
	dis[x]=0;
	que.push(x);
	while(!que.empty()){
		int ant=que.front();
		que.pop();
		int u=head[ant];
		for(int i=u;i!=-1;i=edge[i].next){
			if(dis[edge[i].to]>dis[ant]+edge[i].cost){
				dis[edge[i].to]=dis[ant]+edge[i].cost;
				que.push(edge[i].to);
			}
		}
	}
}
int main(){
	while(~scanf("%d%d",&t,&n)){
		int t1,t2,cos;
		top=0;
		memset(dis,INF,sizeof(dis));
		memset(head,-1,sizeof(head));
		for(int i=1;i<=t;i++){
			scanf("%d%d%d",&t1,&t2,&cos);
			addEdge(t1,t2,cos);
			addEdge(t2,t1,cos);
		}
		spfa(1);
		printf("%d\n",dis[n]);	
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值