最短路练习1 poj 2387 Til the Cows Come Home

本文提供了一道经典的最短路径问题——POJ 2387 Til the Cows Come Home的解决方案。该问题要求计算一头名为Bessie的奶牛从田间的苹果树丛返回谷仓的最短距离。文章详细介绍了如何使用邻接矩阵和Dijkstra算法来解决此问题,并附上了完整的AC代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


                   题目链接:http://poj.org/problem?id=2387
Til the Cows Come Home
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 51700 Accepted: 17474

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. 

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it. 

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N 

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS: 

There are five landmarks. 

OUTPUT DETAILS: 

Bessie can get home by following trails 4, 3, 2, and 1.
最基础的最短路模板,就有一个坑点;思路:更新i点到1点的距离用dis【i】记录;
AC代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<map>
#include<string>
#define LL long long
using namespace std;
const int mod = 1e7+7;
const int inf = 0x3f3f3f3f;
const int maxn = 1e6 +10;
int dis[1005];//i点到1点的距离用dis【i】记录;
int v[1005];//标记是否已经最短;
int ma[1005][1005];//存两点的距离;
int m,n,a,b,c;
int main()
{
    while(~scanf("%d%d",&m,&n))
    {
        memset(ma,inf,sizeof(ma));//只有0,-1,inf=0x3f3f3f3f才可以用memset函数初始化,其他的值会乱码
        memset(v,0,sizeof(v));
        for(int i=0; i<m; i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            if(ma[a][b]>c)//《没有这一行是错的》
            ma[a][b]=ma[b][a]=c;
        }
        dis[n]=0;//这里我都弄反了,让求n到1的,我都写成1到n了,不过不影响结果
        v[n]=1;
        for(int i=1; i<n; i++)
            dis[i]=ma[i][n];
        int h=n-1;
        while(h--)
        {
            int sum=inf,point=-1;
            for(int i=1; i<n; i++)//选一个到原点最短的点(未被标记的点);
                if(!v[i]&&dis[i]<sum)
                {
                    sum=dis[i];
                    point=i;
                }
            if(point !=-1)
            {
                v[point]=1;
                for(int i=1;i<n;i++)//用这个点更新其他点
                    if(!v[i]&&dis[point]+ma[i][point]<dis[i])
                        dis[i]=dis[point]+ma[i][point];
            }
        }
        printf("%d\n",dis[1]);
    }
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值