Codeforces Round #573 Tokitsukaze, CSL and Stone Game

本文深入解析了一种基于石头堆的博弈游戏,通过分析游戏规则,总结了开局必败的条件,并提供了一种判断胜利者的算法。

B. Tokitsukaze, CSL and Stone Game

time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Tokitsukaze and CSL are playing a little game of stones.

In the beginning, there are n piles of stones, the i-th pile of which has ai stones. The two players take turns making moves. Tokitsukaze moves first. On each turn the player chooses a nonempty pile and removes exactly one stone from the pile. A player loses if all of the piles are empty before his turn, or if after removing the stone, two piles (possibly empty) contain the same number of stones. Supposing that both players play optimally, who will win the game?

Consider an example: n=3 and sizes of piles are a1=2, a2=3, a3=0. It is impossible to choose the empty pile, so Tokitsukaze has two choices: the first and the second piles. If she chooses the first pile then the state will be [1,3,0] and it is a good move. But if she chooses the second pile then the state will be [2,2,0] and she immediately loses. So the only good move for her is to choose the first pile.

Supposing that both players always take their best moves and never make mistakes, who will win the game?

Note that even if there are two piles with the same number of stones at the beginning, Tokitsukaze may still be able to make a valid first move. It is only necessary that there are no two piles with the same number of stones after she moves.

Input

The first line contains a single integer n (1≤n≤105) — the number of piles.

The second line contains n integers a1,a2,…,an (0≤a1,a2,…,an≤109), which mean the i-th pile has ai stones.

Output

Print “sjfnb” (without quotes) if Tokitsukaze will win, or “cslnb” (without quotes) if CSL will win. Note the output characters are case-sensitive.

Examples

input

0
output
cslnb

input

2
1 0

output

cslnb

input

2
2 2

output

sjfnb

input

3
2 3 1

output

sjfnb

Note

In the first example, Tokitsukaze cannot take any stone, so CSL will win.
In the second example, Tokitsukaze can only take a stone from the first pile, and then, even though they have no stone, these two piles will have the same number of stones, which implies CSL will win.
In the third example, Tokitsukaze will win. Here is one of the optimal ways:
Firstly, Tokitsukaze can choose the first pile and take a stone from that pile.
Then, CSL can only choose the first pile, because if he chooses the second pile, he will lose immediately.
Finally, Tokitsukaze can choose the second pile, and then CSL will have no choice but to lose.
In the fourth example, they only have one good choice at any time, so Tokitsukaze can make the game lasting as long as possible and finally win.

这题是一个博弈游戏,有n堆石头,两人接连操作,每次可以移去一堆中的一个,如果操作后出现一次有两个相同数量的堆,则输。当初始有两堆相同时,如果能够在操作之后没有相同的,游戏可以继续进行。
首先出现开局必败的局面有:

  • 三个相同的
  • 两对及以上相同的
  • 两个0
  • 一对相同的,但这对相同的中,比它小1的数存在
  • 总和小于n*(n-1)/2,这种情况出现必会出现上述三种情况。

以上情况无法通过一次操作而不出现相同堆,所以初始必败态。
除必败态意外,操作的终态一定会是 0 1 2 3....n-1这是最后不能操作的形式,任意操作都会出现两个相同堆。因为每次只能操作一对中的一个,而在终态之前,总能找到合适的操作。这样可操作的数量便是sum - n*(n-1)/2然后分奇偶即可的出谁是赢家。
以下是java的AC代码

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
 
public class Main {
	static StreamTokenizer st = new StreamTokenizer(new BufferedInputStream(System.in));
	static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
	static PrintWriter pr = new PrintWriter(new BufferedOutputStream(System.out));
	static Scanner sc = new Scanner(System.in);
 
	public static void main(String[] args) throws NumberFormatException, IOException {
		long sum = 0;
		long n = sc.nextLong();
		HashSet<Long> hs = new HashSet<>();
		ArrayList<Long> al = new ArrayList<>();
		for (int i = 0; i < n; i++) {
			long te = sc.nextLong();
			sum += te;
			if(!hs.add(te)) {
				al.add(te);
			}
		}
		for (Long ye : al) {
			if(hs.contains(ye-1)||ye==0) {
				System.out.println("cslnb");
				System.exit(0);
			}
		}
		if (hs.size() < n - 1) {
			System.out.println("cslnb");
		} else {
			sum-=n*(n-1)/2;
			if (sum < 0) {
				System.out.println("cslnb");
			} else if ((sum & 1) == 0) {
				System.out.println("cslnb");
			} else {
				System.out.println("sjfnb");
			}
		}
	}
 
	private static int nextInt() {
		try {
			st.nextToken();
		} catch (IOException e) {
			e.printStackTrace();
		}
		return (int) st.nval;
	}
}
六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进行实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值